
Q1 Lab 2 - Packet Sniffing and Spoofing Lab
15 Points

Lab PDF: Packet Sniffing and Spoofing Lab
Note: For this lab, please only complete Task 1.1 - Task 1.4 (i.e. the scapy
portions) from "3 Lab Task Set 1: Using Scapy to Sniff and Spoof Packets" in the
SEED Labs PDF. Stop on page 7.

Lab setup files: Packet Sniffing and Spoofing Lab - Please use this Labsetup for this lab.
Make sure to take down the docker containers from Lab 1, and install the ones for Lab
2. You should use Labsetup.zip unless you're on Apple Silicon in which you should use
 Labsetup-arm.zip
Docker Manual (if more help is needed)

Note: Only images or TXT files are acceptable upload formats

Normal due date: 5 Mar
Earliest acceptance date: 29 Feb (+1% per day, up to +5% bonus for five days early)
Latest acceptance date: 13 Mar (-8% points)

Please follow the instructions from the PDF document, but submit your work
based on the instructions below. For any code snippets, use the ones from
Gradescope as they would have any corrections.

Q1.1 Task 1.1: Sniffing Packets - Task 1.1A
0 Points

#!/usr/bin/env python3
from scapy.all import *
def print_pkt(pkt):
 pkt.show()
pkt = sniff(iface=’br-c93733e9f913’, filter=’icmp’, prn=print_pkt)

// Make the program executable
chmod a+x sniffer.py
// Run the program with the root privilege
sniffer.py
// Switch to the "seed" account, and
// run the program without the root privilege
su seed
$ sniffer.py

Nothing need to be submitted for Task 1.1.

Q1.2 Task 1.1B(a) - Only ICMP
2.5 Points

Using sniff(filter='___') , capture only ICMP packets.

Select the option that goes in the blank

ping

icmp

tcp

Q1.3 Task 1.1B(a) - Only ICMP (Screenshot)
2.5 Points

Take a screenshot demonstrating that ICMP packets are captured (must
screenshot the entire VM along with date and time).

Hint: Be sure to adjust the iface correctly when working locally

 ICMP packets capture.png  Download

Q1.4 Task 1.1B(b) - Capture specific TCP/port 23
2.5 Points

Capture any TCP packet that comes from a specific IP and with a destination port
number 23. Your code must include the following: (1) capture TCP; (2) capture from
any specific IP address; and (3) capture to destination port 23.

Hint: Use the attacker machine and write your code for sniffing. Then generate telnet
traffic from the attacker machine to test that your program works.

Expected output

Select the option that goes in the blank

tcp port 23

host 10.9.0.3 and port 23

tcp and host 10.9.0.1 and port 23

icmp and host 10.9.0.2 and port 23

Q1.5 Task 1.1B(b) - Capture specific TCP/port 23 (Screenshot)
2.5 Points

Take a screenshot demonstrating that that the TCP/port 23 packet was
captured (must screenshot the entire VM along with date and time).

 Capture of specific TCP-subnet-port labelled.png  Download

Q1.6 Task 1.1B(c) - Particular Subnet
2.5 Points

Capture packets coming from or going to a subnet 10.9.0.0/24. Fill in the blank and
take a screenshot demonstrating the traffic generated.

Expected output

Select the option that goes in the blank
Note: Use subnet 10.9.0.0/24

net 10.9.0.0/24

net 10.9.0.0

net 10.9.0.0/26

net 128.238.0.0/24

Q1.7 Task 1.1B(c) - Particular Subnet (Screenshot)
2.5 Points

Take a screenshot demonstrating that that packets from the 10.9.0.0/24
subnet were captured (must screenshot the entire VM along with date and
time).

 Capture of particular subnet labelled.png  Download

Q2 Task 1.2: Spoofing ICMP Packets
15 Points

>>> from scapy.all import *
>>> a = IP() ➀
>>> a.dst = ’10.0.2.3’ ➁
>>> b = ICMP() ➂
>>> p = a/b ➃
>>> send(p) ➄
.
Sent 1 packets.

Spoof an ICMP echo request packet with source IP address 8.8.8.8 from the first
VM and send to the second VM. Use Wireshark on the second VM to show that it
replies back with echo replies.

Expected wireshark output

Q2.1 Task 1.2 - Scapy code
10 Points

a. Based on the code above, what is the IP address for (1)?

8.8.8.8

b. Based on the code above, what is the IP address for (2)?

10.9.0.5

Q2.2 Task 1.2 - Submit a screenshot of Wireshark showing the spoof echo request from
8.8.8.8 and that the VM replied back to it with an echo reply.
5 Points

(must screenshot the entire VM along with date and time)

 Spoofing ICMP packets.png  Download

Q3 Task 1.3: Fully-automated Traceroute
20 Points

Using the skeleton code below, implement ICMP traceroute using scapy. Do NOT
use the built-in scapy traceroute function. Perform a traceroute to 8.8.8.8. Show
proof using a Wireshark capture and take a screenshot of your program’s output.

Expected output
Note: you can see we finally got a reply in the end in wireshark

Q3.1 Task 1.3 - Scapy code
15 Points

a. Fill in the blank for 1.

1

b. Fill in the blank for 2.

"8.8.8.8"

c. Fill in the blank for 3.

pkt[ICMP].type

Q3.2 Task 1.3 - Write your own trace route program
5 Points

Write your own traceroute program using the skeleton code above. Test your
traceroute program by tracerouting 8.8.8.8. Note: You may need to add additional
code to handle conditions where the router does not respond. Your code must
fully automate automate the trace route for credit.

For Q3.2 Task 1.3, submit the following:

Your traceroute program
Screenshot of Wireshark showing proof of traceroute to 8.8.8.8
Your program output
Screenshot of built-in Ubuntu traceroute to 8.8.8.8 (traceroute -I 8.8.8.8)

Submit a screenshot of Wireshark (must screenshot the entire VM along with
date and time)

 Traceroute program output.png  Download

 Traceroute Ubuntu output.png  Download

 Traceroute wireshark.png  Download

 traceroute.py  Download

1 from scapy.all import *
2
3 ttl=1
4 while True:
5 ip = IP(dst='8.8.8.8', ttl=ttl)
6 icmp = ICMP()
7 p = ip/icmp
8
9 resp = sr1(p, verbose=0, timeout=5)

10
11 if (resp==None):
12 print("TTL: {0}, Source: ???".format(ttl))
13 ttl+=1
14 elif (resp[ICMP].type==0):
15 print("Complete", resp[IP].src)
16 break
17 else:
18 print("TTL: {0}, Source: {1}".format(ttl, resp[IP].src))
19 ttl+=1
20



Q4 Task 1.4: Sniffing and-then Spoofing
50 Points

Sniffing and-then Spoofing. You need two machines on the same LAN: the VM and
the user container.

You will find that when you ping from the terminal, 10.9.0.99 will have a destination
unreachable response. That is the expected result. Your program does not need to
work for this IP. (You do not need to force it to work by performing ARP spoofing.)
You will, however, need to explain why your program does not work for IP 10.9.0.99
(while it’s suppose to work for 1.2.3.4 and 8.8.8.8).

Q4.1 Task 1.4 - Sniffing and then spoofing program
20 Points

Using the skeleton code below, implement the sniffing and the spoofing program.

a. Fill in the blank for 1.

packet[IP].dst

b. Fill in the blank for 2.

packet[IP].src

c. Fill in the blank for 3.

0

d. Fill in the blank for 4.

packet[ICMP].id

e. Fill in the blank for 5.

packet[ICMP].seq

f. Fill in the blank for 6.

packet[Raw].load

g. Fill in the blank for 7.

ip/icmp/raw_data

h. [10 pts] Fill in the blank for 8. You must filter out the packets that are sent out
by your program. This question is worth ten points.

"not ether src 02:42:1c:59:ed:77"

Q4.2 Task 1.4 - Ping 1.2.3.4 and show screenshots of the output from your program and
with the ping from the terminal
10 Points

Expected output for 1.2.3.4

Must screenshot the entire VM along with date and time

 Sniff and spoof ping 1.2.3.4.png  Download

Q4.3 Task 1.4 - Ping 10.9.0.99 and show screenshots of the output from your program and
with the ping from the terminal. If this does not work, please explain why.
10 Points

Expected output for 10.9.0.99

Must screenshot the entire VM along with date and time

 Sniff and spoof ping 10.9.0.99.png  Download

Explain why it does not work. Explain what the host is doing and what protocol is
failing to cause this error.



When we type in this command, the attacker VM looks at the IP and realizes
that it is on the local subnet. So, the attacker VM will do an ARP request to see
the MAC address associated with the IP being pinged. Since the IP does not
exist on the subnet, the ARP request fails, and the attacker VM does not even
send the ICMP ping request. Since an ICMP ping request is not sent, our
program fails, since that is what it replies to.

Q4.4 Task 1.4 - Ping 8.8.8.8 and show screenshots of the output from your program and
with the ping from the terminal
10 Points

Expected output for 8.8.8.8

Must screenshot the entire VM along with date and time

 Sniff and spoof ping 8.8.8.8.png  Download

