Q1 Introduction to iptables
0 Points

Introduction

Firewall Exploration Lab Copyright © 2006 - 2021 by Wenliang Du. This work is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
License. If you remix, transform, or build upon the material, this copyright notice must be
left intact, or reproduced in a way that is reasonable to the medium in which the work is
being re-published.

We will only be using tasks 2-4 from the SEED lab, with additional Task A, B, and C
not in the PDF file. The full full lab detail can be found here: Firewall Exploration Lab

Earliest acceptance date: 30 April (+5% bonus)
Normal due date: 5 May
Latest acceptance date: 9 May (-4% points)

Note: Ensure all screenshots contain the full VM with the date and time.

Please follow the instructions in the Firewall Explorations Lab to setup the lab
environment. Specifically, you would need to download the Labsetup.zip or
Labsetup-arm.zip (for Apple Silicon) file and import it into the VM to set up the
docker containers.

10.9.0.0/24 10.9.0.11

Router

s Attacker

10.9.0.1

192.168.60.0/24

& &

192.168.60.5 192.168.60.6 192.168.60.7

Note: Please skip Task 1 and move to Task 2 (page 8)

Q2 Task 2: Experimenting with Stateless Firewall Rules
35 Points

Linux already has a built-in firewall, also based on netfilter. This firewall is called
iptables. Technically, the kernel part implementation of the firewall is called
Xtables, while iptables is a user-space program to configure the firewall. However,
iptables is often used to refer to both the kernel-part implementation and the
user-space program.

Using IPtables

To add rules to the chains in each table, we use the iptables command, which is a
quite powerful command. Students can find the manual of iptables by typing "man
iptables" or easily find many tutorials from online. What makes iptables
complicated is the many command-line arguments that we need to provide when
using the command. However, if we understand the structure of these command-
line arguments, we will find out that the command is not that complicated.

In a typical iptables command, we add a rule to or remove a rule from one of the
chains in one of the tables, so we need to specify a table name (the default is filter),
a chain name, and an operation on the chain. After that, we specify the rule, which
is basically a pattern that will be matched with each of the packets passing
through. If there is a match, an action will be performed on this packet. The
general structure of the command is depicted in the following:

Table 1: iptables Tables and Chains

Table

Chain

Functionality

filter

INPUT
FORWARD
OUTPUT

Packet filtering

nat

PREROUTING
INPUT
OQUTPUT
POSTROUTING

Modifying source or destination
network addresses

mangle

PREROUTING
INPUT
FORWARD
OQUTPUT
POSTROUTING

Packet content modification

iptables -t <table> -

<operation> <chain> <rule> -j <target>

Table Chain Rule Action

The rule is the most complicated part of the iptables command. We will provide
additional information later when we use specific rules. In the following, we list
some commonly used commands:

// List all the rules in a table (without line number)

iptables -t nat-L-n

// List all the rules in a table (with line number)
iptables -t filter -L -n --line-numbers
// Delete rule No. 2 in the INPUT chain of the filter table

iptables -tfilter -D I

NPUT 2

// Drop all the incoming packets that satisfy the <rule>
iptables -t filter -A INPUT <rule> -j DROP

Note. Docker relies on iptables to manage the networks it creates, so it adds many
rules to the nat table. When we manipulate iptables rules, we should be careful not

to remove Docker rules. For example, it will be quite dangerous to run the
"iptables -t nat -F" command, because it removes all the rules in the nat table,

including many of the Docker rules. That will cause trouble to Docker containers.
Doing this for the filter table is fine, because Docker does not touch this table.

Q2.1 Task 2.A: Protecting the Router
5 Points

In this task, we will set up rules to prevent outside machines from accessing the
router machine, except ping. Please execute the following iptables command on
the router container, and then try to access it from 10.9.0.5.

iptables -A INPUT -p icmp --icmp-type echo-request -j ACCEPT
iptables -A OUTPUT -p icmp --icmp-type echo-reply -j ACCEPT
iptables -P OUTPUT DROP #Set default rule for OUTPUT
iptables -P INPUT DROP #Set default rule for INPUT

Expected Output
Note: Only ping packets are allowed, not telnet

M - seed@VM: ~/.../Labsetup Q

root@33bd6féddcae:/# ping 10.9.0.11

PING 10.9.0.11 (10.9.0.11) 56(84) bytes of data.

64 bytes from 10.9.0.11: icmp seq=1 ttl=64 time=0.074
ms

64 bytes from 10.9.0.11: icmp seqg=2 ttl=64 time=0.087
ms

64 bytes from 10.9.0.11: icmp seq=3 ttl=64 time=0.085
ms

64 bytes from 10.9.0.11: icmp seq=4 ttl=64 time=0.087
ms

~C

---10.9.0.11 ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, ti
me 3068ms

rtt min/avg/max/mdev = 0.074/0.083/0.087/0.005 ms
root@33bd6fbddcae:/# telnet 10.9.0.11

Trying 10.9.0.11...

~C

root@33bd6f6ddcae: /# |

Upload screenshots below (must show ping and telnet)

v 2A _ping_only.png < Download

Activities C-]) Terminal « May2 22:07 e
I 4 seed@VM: ~/.../Labsetup

[05/02/24]seed@VM:~/.../Labsetup$ dockps

9aa7af02f8b3 hostA-10.9.0.5

267760e3bc58 host2-192.168.60.6

547aebbecaad host3-192.168.60.7

bfoa51fb96a8 seed-router

2c5d5fccbecde host1-192.168.60.5

[65/02/24]seed@VM:~/.../Labsetup$ docksh 9a

root@9aa7afe2f8b3:/# ping 10.9.0.11

PING 10.9.0.11 (10.9.0.11) 56(84) bytes of data.
from 10.9.0.11: icmp seq=1 ttl=64 time=0.176
from 10.9.0.11: icmp seq=2 ttl=64 time=0.077
from 10.9.0.11: icmp seq=3 ttl=64 time=0.113
from 10.9.0.11: icmp seq=4 ttl=64 time=0.149

--- 10.9.0.11 ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 3076ms
rtt min/avg/max/mdev = 0.077/0.128/0.176/0.037 ms
root@aa7afe2f8b3:/# telnet 10.9.0.11

root@9aa7afe2f8b3:/#

1.If an incoming packet is an ICMP echo-request, let it pass through the
firewall.

2.If an outgoing packet is an ICMP echo-reply, let it pass through the firewall.
3.If an outgoing packet does not match one of the rules, drop it.

4.If an incoming packet does not match one of the rules, drop it.

Answer the following questions
(1) Can you ping the router?
(2) Can you telnet into the router?

Cleanup. Before moving on to the next task, please restore the filter table to its
original state by running the following commands:

iptables -F
iptables -P OUTPUT ACCEPT
iptables -P INPUT ACCEPT

Another way to restore the states of all the tables is to restart the container. You
can do it using the following command (you need to find the container’s ID first):

$ docker restart <Container ID>

Q2.2 Task 2.B: Protecting the Internal Network
15 Points

In this task, we will set up firewall rules on the router to protect the internal
network 192.168.60.0/24. We need to use the FORWARD chain for this purpose.

The directions of packets in the INPUT and OUTPUT chains are clear: packets are
either coming into (for INPUT) or going out (for OUTPUT). This is not true for the
FORWARD chain, because it is bi-directional: packets going into the internal
network or going out to the external network all go through this chain. To specify
the direction, we can add the interface options using "-i xyz" (coming in from the
xyz interface) and/or "-o xyz" (going out from the xyz interface). The interfaces for
the internal and external networks are different. You can find out the interface
names via the "ip addr" command.

In this task, we want to implement a firewall to protect the internal network. More
specifically, we need to enforce the following restrictions on the ICMP traffic:

1. Outside hosts cannot ping internal hosts.

2. Outside hosts can ping the router.

3. Internal hosts can ping outside hosts.

4. All other packets between the internal and external networks should be blocked

Note: "Outside" refers to the internet, not just the 10.9.0.11/24 network.

You will need to use the "-p icmp" options to specify the match options related to
the ICMP protocol. You can run "iptables -p icmp -h" to find out all the ICMP match
options. The following example drops the ICMP echo request.

iptables -A FORWARD -p icmp --icmp-type echo-request -j DROP

Expected Output (Note: Ignore the 2.4 in the text)

ifconfig = ifconfig

0 frane 0
El s 189, B)
2.4 Question 2 2 o carrier 0 collisions © 9 4 Question 3

ping() for 10.9.0.11 -
(e~ PG 19565 ping() for 10.9.0.5 (Host

2.4 Question 1

ping() for 192.168.60.7
(host 3) - Not working All
21 packets are lost

s 3 tine=.076 5
64 bytes fron A) - working!

2.4 Question 4
: mms Attempting to telnet 10.9.0.5
2.4 Question 4 > j (HostA) - it never makes it

Attempting to telnet
192.168.60.7 (it never
makes it)

Upload a screenshot of your iptable rules from the router
Run the iptables -L.-v command to view iptable rules

v 2B_rules.png & Download
root@bf@aSibeﬁaB:/# iptables -L -v
Chain INPUT (policy DROP © packets, © bytes)
pkts bytes target prot opt in out source destination

0 © ACCEPT icmp -- any any anywhere anywhere
icmp echo-request

Chain FORWARD (policy DROP © packets, © bytes)

pkts bytes target prot opt in out source destination

0 © DROP icmp -- eth® ethl anywhere anywhere
icmp echo-request

0] © DROP icmp -- ethl ethe anywhere anywhere
icmp echo-reply

0] © ACCEPT icmp -- ethl ethe anywhere anywhere
icmp echo-request

0 © ACCEPT icmp -- etho ethl anywhere anywhere

icmp echo-reply

Chain OUTPUT (policy DROP 0@ packets, © bytes)
pkts bytes target prot opt in out source destination

0] © ACCEPT icmp -- any any anywhere anywhere
icmp echo-reply

Upload screenshots showing proof of checking rules 1-4 above (Please label
each items)

v internal_ping_outside.png < Download

[05/02/24] seed@VM:~/.../Labsetup$ dockps

9aa7afe2f8b3 hostA-10.9.0.5

267760e3bc58 host2-192.168.60.6

547ae6becaad host3-192.168.60.7

bfea51fb96a8 seed-router

2c5d5fccbcdc hostl1-192.168.60.5

[05/02/24] seed@VM:~/.../Labsetup$ docksh 26
root@267760e3bc58:/# ping 10.9.0.5

PING 10.9.0.5 (10.9.0.5) 56(84) bytes of data.

64 bytes from 10. icmp seq=1 ttl=63 time=0.138 ms
64 bytes from 10. icmp seq=2 ttl=63 time=0.184 ms
64 bytes from 10. icmp seq=3 ttl=63 time=0.219 ms
64 bytes from 10. icmp seq=4 ttl=63 time=0.071 ms
~C

--- 10.9.0.5 ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 3059ms
rtt min/avg/max/mdev = 0.071/0.153/0.219/0.055 ms
root@267760e3bc58: /# I

9.0.5:
9.0.5:
9.0.5:
9.0.5:

v internal_telnet_outside.png < Download

[65/02/24])seed@VM:~/.../Labsetup$ dockps
9aa7afe2f8b3 hostA-10.9.0.5

267760e3bc58 host2-192.168.60.6
547ae6becaad host3-192.168.60.7
bfea51fb96a8 seed-router

2c5d5fccbcdc hostl-192.168.60.5
[05/02/24])seed@/M:~/.../Labsetup$ docksh 26
root@267760e3bc58: /# telnet 10.9.0.5

Trying 10.9.0.5...

v outside_ping_internal.png < Download

[65/02/24] seed@VM:~/.../Labsetup$ dockps

9aa7afe2f8b3 hostA-10.9.0.5

267760e3bc58 host2-192.168.60.6

547aebbecaad host3-192.168.60.7

bfea51fb96a8 seed-router

2c5d5fccbcdc hostl-192.168.60.5
[65/02/24]seed@/M:~/.../Labsetup$ docksh 9a
root@aa7afe2f8b3:/# ping 192.168.60.6

PING 192.168.60.6 (192.168.60.6) 56(84) bytes of data.
~C

--- 192.168.60.6 ping statistics ---

17 packets transmitted, © received, 100% packet loss, time 16393ms

root@9aa7afe2fab3:/# |

v outside_ping_router.png & Download

[05/02/24]seed@VM:~/.../Labsetup$ dockps

9aa7afe2f8b3 hostA-10.9.0.5

267760e3bc58 host2-192.168.60.6

547ae6becaad host3-192.168.60.7

bfea51fb96a8 seed-router

2c5d5fccbcdc hostl1-192.168.60.5

[05/02/24] seed@VM:~/.../Labsetup$ docksh 9a
root@9aa7afe2f8b3:/# ping 10.9.06.11

PING 10.9.0.11 (10.9.0.11) 56(84) bytes of data.

64 bytes from 10.9.0.11: icmp seqg=1 ttl=64 time=0.144 ms
64 bytes from 10.9.0.11: icmp seq=2 ttl=64 time=0.084 ms
64 bytes from 10.9.0.11: icmp seq=3 ttl=64 time=0.057 ms
64 bytes from 10.9.0.11: icmp seq=4 ttl=64 time=0.101 ms
~C

--- 10.9.0.11 ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 3049ms
rtt min/avg/max/mdev = 0.057/0.096/0.144/0.031 ms
root@9aa7afe2fsb3: /# |j

v outside_telnet_internal.png & Download

[65/02/24] seed@VM:~/.../Labsetup$ dockps
9aa7afe2f8b3 hostA-10.9.0.5

267760e3bc58 host2-192.168.60.6
547ae6becaad host3-192.168.60.7
bfea51fb96a8 seed-router

2c5d5fccbcdc hostl1l-192.168.60.5
[65/02/24]seed@VM:~/.../Labsetup$ docksh 9a
root@aa7af02f8b3:/# telnet 192.168.60.6
Trying 192.168.60.6...

Q2.3 Task 2.C: Protecting Internal Servers
15 Points

In this task, we want to protect the TCP servers inside the internal network
(192.168.60.0/24). More specifically, we would like to achieve the following
objectives.

1. All the internal hosts run a telnet server (listening to port 23). Outside hosts can only
access the telnet server on 192.168.60.5, not the other internal hosts.

. Outside hosts cannot access other internal servers.

. Internal hosts can access all the internal servers.

. Internal hosts cannot access external servers.

. In this task, the connection tracking mechanism is not allowed. It will be used in a later
task

u b WN

Note: "Outside" refers to the internet, not just the 10.9.0.11/24 network.

You will need to use the "-p tcp" options to specify the match options related to the
TCP protocol. You can run "iptables -p tcp -h" to find out all the TCP match options.
The following example allows the TCP packets coming from the interface ethOQ if
their source port is 5000.

iptables -A FORWARD -i eth0 -p tcp --sport 5000 -j ACCEPT

Expected Output

~ Router

IFCONFIG
IFCONFIG

Question 1:
All the internal hosts run a telnet server (listening to
port 23). Outside hosts can only access the telnet server
on 192.168.60.5, not the other internal hosts

X Question 3:
Ques.llun 2 Internal hosts can
Outside hosts cannot access " accessall the
other internal servers. internal servers.

IPCONFIG

Question 4:

Internal hosts cannot
q access external servers.
ping to host 3
Question 3:
Internal hosts can access
all the internal servers.

Upload a screenshot of your iptable rules from the router
Run the iptables -L.-v command to view iptable rules

v 2C_rules.png & Download
root@bfea51fb96a8: /# iptables -L -v

Chain INPUT (policy DROP © packets, @ bytes)
pkts bytes target prot opt in out source destination

Chain FORWARD (policy DROP © packets, © bytes)

pkts bytes target prot opt in out source destination
0 0 ACCEPT tcp -- ethe ethl anywhere 192.168.60.
5 tcp dpt:telnet
0 © ACCEPT tcp -- ethl ethe 192.168.60.5 anywhere
tcp spt:telnet
0] @ ACCEPT tcp -- ethl ethl 192.168.60.5 anywhere
tcp spt:telnet
0 0 ACCEPT tcp -- ethl ethl anywhere 192.168.60.
5 tcp dpt:telnet
0 © ACCEPT tcp -- ethl ethl anywhere 192.168.60.
6 tcp dpt:telnet
0 0 ACCEPT tcp -- ethl ethl 192.168.60.6 anywhere
tcp spt:telnet
0 0 ACCEPT tcp -- ethl ethl 192.168.60.7 anywhere
tcp spt:telnet
0 © ACCEPT tcp -- ethl ethl anywhere 192.168.60.
7 tcp dpt:telnet

Chain OUTPUT (policy DROP © packets, 0 bytes)
pkts bytes target prot opt in out source destination

root@bfeas1fboe6as: /# |j

Upload screenshots showing proof of checking rules 1-5 above (Please label
each items)

v 2C_192.168.60.5_telnet_outside_and_internal.png

[65/03/24]seed@VM:~/.../Labsetup$ dockps
9aa7afe2f8b3 hostA-10.9.0.5
267760e3bc58 host2-192.168.60.6
547ae6becaad host3-192.168.60.7
bfea51fb96a8 seed-router

2c5d5fccbcdc host1-192.168.60.5
[05/03/24] seed@VM:~/.../Labsetup$ docksh 2c
root@2c5d5fccbecdc: /# telnet 10.9.0.5
Trying 10.9.0.5...

~C

root@2c5d5fccbedc: /# telnet 192.168.60.6
Trying 192.168.60.6...

Connected to 192.168.60.6.

Escape character is '7]'.

Ubuntu 20.04.1 LTS

267760e3bc58 login: skdmf

Password:

Connection closed by foreign host.
root@2c5d5fccbedc: /# telnet 192.168.60.7
Trying 192.168.60.7...

Connected to 192.168.60.7.

Escape character is '™]°'.

Ubuntu 20.04.1 LTS

547aebbecaad login: dklfj

Password:

“CConnection closed by foreign host.
root@2c5d5fccbedc: /#

& Download

v 2C_192.168.60.6_telnet_outside_and_internal.png < Download

[65/03/24]seed@VM:~/.../Labsetup$ dockps
9aa7afe2f8b3 hostA-10.9.0.5
267760e3bc58 host2-192.168.60.6
547ae6becaad host3-192.168.60.7
bfea51fb96a8 seed-router

2c5d5fccbcdc hostl-192.168.60.5
[05/03/24]seed@VM:~/.../Labsetup$ docksh 26
root@267760e3bc58: /# telnet 10.9.0.5
Trying 10.9.0.5...

~C

root@267760e3bc58: /# telnet 192.168.60.7
Trying 192.168.60.7...

Connected to 192.168.60.7.

Escape character is '*]'.

Ubuntu 20.04.1 LTS

547ae6becaad login: exit

Password:

“CConnection closed by foreign host.
root@267760e3bc58: /# telnet 192.168.60.5
Trying 192.168.60.5...

Connected to 192.168.60.5.

Escape character is '"]"'.

Ubuntu 20.04.1 LTS

2c5d5fccbecdec login: cc

Password:

“CConnection closed by foreign host.
root@267760e3bc58: /# I

v 2C_192.168.60.7_telnet_outside_and_internal.png < Download

[05/03/24]seed@VM:~/.../Labsetup$ dockps
9aa7afe2f8b3 hostA-10.9.0.5
267760e3bc58 host2-192.168.60.6
547ae6becaad host3-192.168.60.7
bfea51fb96a8 seed-router

2c5d5fccbcdc hostl-192.168.60.5
[05/03/24]seed@VM:~/.../Labsetup$ docksh 54
root@47ae6becaad: /# telnet 10.9.0.5
Trying 10.9.0.5...

~C

root@47ae6becaad: /# telnet 192.168.60.6
Trying 192.168.60.6...

Connected to 192.168.60.6.

Escape character is '*]"'.

Ubuntu 20.04.1 LTS

267760e3bc58 login: dkds

Password:

“CConnection closed by foreign host.
root@547ae6becaad: /# telnet 192.168.60.5
Trying 192.168.60.5...

Connected to 192.168.60.5.

Escape character is '*]".

Ubuntu 20.04.1 LTS

2c5d5fccbcdc login: sdawd

Password:

“CConnection closed by foreign host.
root@547ae6becaad: /# |j

v 2C_outside_telnet_internal.png & Download

[05/03/24]seed@VM:~/.../Labsetup$ dockps
9aa7af02f8b3 hostA-10.9.0.5
267760e3bc58 host2-192.168.60.6
547aeb6becaad host3-pErEul-1 Ny
bfea51fb96a8 seed-router

2c5d5fccbcdc hostl-192.168.60.5
[05/03/24]seed@VM:~/.../Labsetup$ docksh 9a
root@aa7ate2f8b3:/# telnet 192.168.60.5
Trying 192.168.60.5...

Connected to 192.168.60.5.

Escape character is '~]°'.

ACAA]

Ubuntu 20.04.1 LTS

1

2c5d5fccbecdc login: *°7"7" """ exit
Password:

“CConnection closed by foreign host.
root@9aa7afe2f8b3:/# telnet 192.168.60.7
Trying 192.168.60.7...

~C

root@9aa7af02f8b3:/# telnet 192.168.60.6
Trying 192.168.60.6...

~C

root@aa7ate2f8b3:/#

When you are done with this task, please remember to clean the table (e iptables -F)
or restart the container before moving on to the next task.

Q3 Task 3: Connection Tracking and Stateful Firewall
25 Points

In the previous task, we have only set up stateless firewalls, which inspect each
packet independently. However, packets are usually not independent; they may be
part of a TCP connection, or they may be ICMP packets triggered by other packets.
Treating them independently does not take into consideration the context of the
packets, and can thus lead to inaccurate, unsafe, or complicated firewall rules. For
example, if we would like to allow TCP packets to get into our network only if a
connection was made first, we cannot achieve that easily using stateless packet
filters, because when the firewall examines each individual TCP packet, it has no
idea whether the packet belongs to an existing connection or not, unless the
firewall maintains some state information for each connection. If it does that, it
becomes a stateful firewall.

Q3.1 Task 3.A: Experiment with the Connection Tracking
15 Points

To support stateful firewalls, we need to be able to track connections. This is
achieved by the conntrack mechanism inside the kernel. In this task, we will
conduct experiments related to this module, and get familiar with the connection
tracking mechanism. In our experiment, we will check the connection tracking
information on the router container. This can be done using the following
command:

conntrack -L

The goal of the task is to use a series of experiments to help students understand
the connection concept in this tracking mechanism, especially for the ICMP and
UDP protocols, because unlike TCP, they do not have connections. Please conduct
the following experiments. For each experiment, please describe your observation,
along with your explanation.

Hint: Use sysctl net.netfilter to see the timeout settings, and verify.

Expected Output for ICMP only (similar output for UDP and TCP)

root@9193e8603cb9:/# conntrack -L

{icmp 1 7 src=10.9.0.5 dst=192.168.60.5 type=8 code=0 id=71 src=192.168.60.5
dst=10.9.0.5 type=0 code=0 id=71 mark=0 use=1

conntrack v1.4.5 (conntrack-tools): 1 flow entries have been shown.
root@9193e8603ch9:/# conntrack -L

icmp 10 src=10.9.0.5 dst=192.168.60.5 type=8 code=0 id=71 src=192.168.60.5
dst=10.9.0.5 type=0 code=0 id=71 mark=0 use=1

conntrack v1.4.5 (conntrack-tools): 1 flow entries have been shown.
root@9193e8603ch9:/# conntrack -L

conntrack v1.4.5 (conntrack-tools): 0 flow entries have been shown.
root@9193e8603cb9: /# |j
Bl N sl i e D e |

» ICMP experiment: Run the following command and check the
connection tracking information on the router. Describe your
observation. How long is the ICMP connection state be kept?

// On 10.9.0.5, send out ICMP packets
ping 192.168.60.5

Upload your screenshots for ICMP connection tracking

v 3A_connection_tracking_icmp.png

root@bfea51fb96a8:/# conntrack -L

icmp 1 27 src=10.9.0.5 dst=192.168.60.5 type=8
.5 dst=10.9.0.5 type=0 code=0 id=119 mark=0 use=1
conntrack v1.4.5 (conntrack-tools): 1 flow entries
root@bfea51fb96a8:/# conntrack -L

icmp 1 26 src=10.9.0.5 dst=192.168.60.5 type=8
.5 dst=10.9.0.5 type=0 code=0 id=119 mark=0 use=1
conntrack v1.4.5 (conntrack-tools): 1 flow entries
root@bfea51fb96a8: /# conntrack -L

icmp 1 25 src=10.9.0.5 dst=192.168.60.5 type=8
.5 dst=10.9.0.5 type=0 code=0 id=119 mark=0 use=1
conntrack v1.4.5 (conntrack-tools): 1 flow entries
root@bfea51fb96a8: /# conntrack -L

icmp 1 24 src=10.9.0.5 dst=192.168.60.5 type=8
.5 dst=10.9.0.5 type=0 code=0 id=119 mark=0 use=1
conntrack v1.4.5 (conntrack-tools): 1 flow entries
root@bfea51fb96a8:/# conntrack -L

icmp 1 23 src=10.9.0.5 dst=192.168.60.5 type=8
.5 dst=10.9.0.5 type=0 code=0 id=119 mark=0 use=1
conntrack v1.4.5 (conntrack-tools): 1 flow entries
root@bfea51fb96a8:/# conntrack -L

icmp 1 22 src=10.9.0.5 dst=192.168.60.5 type=8
.5 dst=10.9.0.5 type=0 code=0 id=119 mark=0 use=1
conntrack v1.4.5 (conntrack-tools): 1 flow entries

& Download

code=0 id=119 src=192.

have been shown.

code=0 id=119 src=192.

have been shown.

code=0 id=119 src=192.

have been shown.

code=0 id=119 src=192.

have been shown.

code=0 id=119 src=192.

have been shown.

code=0 id=119 src=192.

have been shown.

168.60

168.60

168.60

168.60

168.60

168.60

Describe your observation for ICMP connection tracking. Be sure to specify how
long the tracking information is kept once a connection has been established.

« UDP experiment: Run the following command and check the

connection tracking information on the router. Describe your
observation. How long is the UDP connection state be kept?

// On 192.168.60.5, start a netcat UDP server
nc -lu 9090

// 0On 10.9.0.5, send out UDP packets

#nc-u 192.168.60.5 9090

<type something, then hit return>

Upload your screenshots for UDP connection tracking

~ 3A_connection_tracking_udp.png < Download

root@bfeas51fb96a8: /# conntrack -L

udp 17 25 src=10.9.0.5 dst=192.168.60.5 sport=43285 dport=9090 [UNREPLIED]
src=192.168.60.5 dst=10.9.0.5 sport=9090 dport=43285 mark=0 use=1

conntrack v1.4.5 (conntrack-tools): 1 flow entries have been shown.
root@bfe®a51fb96a8: /# conntrack -L

udp 17 23 src=10.9.0.5 dst=192.168.60.5 sport=43285 dport=9090 [UNREPLIED]
src=192.168.60.5 dst=10.9.0.5 sport=9090 dport=43285 mark=0 use=1

conntrack v1.4.5 (conntrack-tools): 1 flow entries have been shown.
root@bfe0a51fb96a8:/# conntrack -L

udp 17 22 src=10.9.0.5 dst=192.168.60.5 sport=43285 dport=9090 [UNREPLIED]
src=192.168.60.5 dst=10.9.0.5 sport=9090 dport=43285 mark=0 use=1

conntrack v1.4.5 (conntrack-tools): 1 flow entries have been shown.
root@bfeas51fb96a8: /# conntrack -L

udp 17 21 src=10.9.0.5 dst=192.168.60.5 sport=43285 dport=9090 [UNREPLIED]
src=192.168.60.5 dst=10.9.0.5 sport=9090 dport=43285 mark=0 use=1

conntrack v1.4.5 (conntrack-tools): 1 flow entries have been shown.
root@bfea51fb96a8: /# conntrack -L

conntrack v1.4.5 (conntrack-tools): @ flow entries have been shown.
root@bfeas1fbocas: /# [

Describe your observation for UDP connection tracking. Be sure to specify how
long the tracking information is kept once a connection has been established.

» TCP experiment: Run the following command and check the
connection tracking information on the router. Describe your
observation. Be sure to specify how long the tracking information is
kept once a connection has been established.

// On 192.168.60.5, start a netcat TCP server
nc -19090

// 0On 10.9.0.5, send out TCP packets

nc 192.168.60.5 9090

<type something, then hit return>

Upload your screenshots for TCP connection tracking

~ 3A_connection_tracking_tcp.png < Download

root@bf0a51fb96a8: /# conntrack -L

tcp 6 431985 ESTABLISHED src=10.9.0.5 dst=192.168.60.5 sport=48806 dport=9
P90 src=192.168.60.5 dst=10.9.0.5 sport=9090 dport=48806 [ASSURED] mark=0 use=1
conntrack v1.4.5 (conntrack-tools): 1 flow entries have been shown.
root@bf0a51fb96a8: /# conntrack -L

tcp 6 431995 ESTABLISHED src=10.9.0.5 dst=192.168.60.5 sport=48806 dport=9
090 src=192.168.60.5 dst=10.9.0.5 sport=9090 dport=48806 [ASSURED] mark=0 use=1
conntrack v1.4.5 (conntrack-tools): 1 flow entries have been shown.
root@bfeas51fb96as: /# i

Describe your observation for TCP connection tracking. Be sure to specify how
long the tracking information is kept.

The UDP connection tracking information is kept for 432000 seconds

Q3.2 Task 3.B: Setting Up a Stateful Firewall
10 Points

Now we are ready to set up firewall rules based on connections. In the following
example, the "-m conntrack" option indicates that we are using the conntrack
module, which is a very important module for iptables; it tracks connections, and
iptables replies on the tracking information to build stateful firewalls. The --ctsate
ESTABLISHED,RELATED indicates that whether a packet belongs to an ESTABLISHED
or RELATED connection. The rule allows TCP packets belonging to an existing
connection to pass through.

iptables -A FORWARD -p tcp -m conntrack --ctstate ESTABLISHED,RELATED -j ACCEPT

The rule above does not cover the SYN packets, which do not belong to any
established connection. Without it, we will not be able to create a connection in the
first place. Therefore, we need to add a rule to accept incoming SYN packet:

iptables -A FORWARD -p tcp -i ethO --dport 8080 --syn -m conntrack --ctstate NEW -j ACCEPT

Finally, we will set the default policy on FORWARD to drop everything. This way, if a
packet is not accepted by the two rules above, they will be dropped.

iptables -P FORWARD DROP

Please rewrite the firewall rules in Q2.3 Task 2.C, but this time, we will add a rule
allowing internal hosts to visit any external server (this was not allowed in Task
2.C). After you write the rules using the connection tracking mechanism, think
about how to do it without using the connection tracking mechanism (you do not
need to actually implement them). When you are done with this task, remember to
clear all the rules.

Upload your IPTables rules iptables -L-v and highlight the new rule to allow
internal hosts to visit any external server

v 3B_rules.png < Download

root@f0a51fb96as: /# iptables -L -v
Chain INPUT (policy DROP O packets, @ bytes)

pkts bytes target prot opt in out source destination
Chain FORWARD (policy DROP 6 packets, 374 bytes)
pkts bytes target prot opt in out source destination
140 7914 ACCEPT tcp -- any any anywhere anywhere ctstate RELAT
ED,ESTABLISHED
1 60 ACCEPT tcp -- ethe ethl anywhere 192.168.60.5 tcp dpt:telne
t flags:FIN,SYN,RST,ACK/SYN ctstate NEW
0 0 ACCEPT tecp -- ethl ethl anywhere anywhere tcp dpt:telne
t flags:FIN,SYN,RST,ACK/SYN ctstate NEW

30 ACCEPT
:FIN,SYN,RST,ACK

ethl etho anywhere anywhere
ctstate NEW

p tcp dpt:telne

t flags

Chain OUTPUT (policy DROP @ packets, © bytes)
pkts bytes target prot opt in out source destination
root@f0a51fb96as: /# ||

Q4 Task 4: Limiting Network Traffic
10 Points

In addition to blocking packets, we can also limit the number of packets that can
pass through the firewall. This can be done using the limit module of iptables. In
this task, we will use this module to limit how many packets from 10.9.0.5 are
allowed to get into the internal network. You can use "iptables -m limit -h" to see
the manual.

$ iptables -m limit -h

limit match options:

--limit avg max average match rate: default 3/hour
[Packets per second unless followed by
/sec /minute /hour /day postfixes]

--limit-burst number number to match in a burst, default 5

Please run the following commands on router, and then ping 192.168.60.5 from
10.9.0.5. Describe your observation. Please conduct the experiment with and
without the second rule, and then explain whether the second rule is needed or
not, and why.

iptables -A FORWARD -s 10.9.0.5 -m limit \
--limit 10/minute --limit-burst 5 -j ACCEPT
iptables -A FORWARD -s 10.9.0.5 -j DROP

Expected Output with second rule

root@33bd6fbddcae: /# ping 192.168.60.5

PING 192.168.60.5 (192.168.60.5) 56(84) bytes of data.

64 bytes from 192.168.60.5: icmp seq=1 ttl=63 time=0.083 ms
64 bytes from 192.168.60. icmp seq=2 ttl=63 time=0.135 ms
64 bytes from 192.168.60. icmp seq=3 ttl=63 time=0.161 ms
64 bytes from 192.168.60. icmp seq=4 ttl=63 time=0.111 ms
64 bytes from 192.168.60. icmp seqg=5 ttl=63 time=0.113 ms
64 bytes from 192.168.60. icmp seq=7 ttl=63 time=0.105 ms
icmp seg=13 ttl=63 time=0.111 ms
icmp seq=19 ttl=63 time=0.116 ms

tnunubnununun L

64 bytes from 192.168.60.
4 bytes from 192.168.60.

- 192.168.60.5 ping statistics ---

packets transmitted, 8 received, 66.6667% packet loss, time 2353
1ms
rtt min/avg/max/mdev = 0.083/0.116/0.161/0.021 ms

Upload your screenshots below

v 4.png < Download
root@aa7af02f8b3:/# ping 192.168.60.5
PING 192.168.60.5 (192.168.60.5) 56(84) bytes of data.
64 bytes from 192.168.60.5: icmp seq=1 ttl=63 time=0.1
ég Estes from 192.168.60.5: icmp seq=2 ttl=63 time=0.0
23 E;tes from 192.168.60.5: icmp seq=3 ttl=63 time=0.1
22 E;tes from 192.168.60.5: icmp seq=4 ttl=63 time=0.2
22 E;tes from 192.168.60.5: icmp seq=5 ttl=63 time=0.1
22 E;tes from 192.168.60.5: icmp seq=7 ttl=63 time=0.1
22 E;tes from 192.168.60.5: icmp seq=13 tt1l=63 time=0.
éisbgies from 192.168.60.5: icmp seq=19 tt1l=63 time=0.
056 ms
Explain your observation on whether the second rule is needed or not, and
why

After the initial burst of 5 packets, the firewall starts dropping packets so that
the limit of 10 packets per minute is upheld. The second rule is needed because
otherwise the firewall does not drop packets so that the limit is upheld (since
the default rule on FORWARD is to accept everything).

Q5 Task A - Multiple Choice
5 Points

Q5.1
1 Point

This Chain applies for all packets that are addressed to the firewall
@ INPUT

O ouTPUT

O FORWARD

Q5.2
1 Point

This chain applies for all packets originating from firewall and going out of the
server

O INPUT

@ OUTPUT

O FORWARD

Q5.3
1 Point

This chain applies for all packets passing through the firewall from other hosts on
the network. The host with iptables is neither the source nor destination of the
packet; mainly used to route packets through the machines on the network.

O INPUT
O OUTPUT
@® FORWARD

Q5.4
1 Point

This jump target does not respond to a packet at all and does nothing with the
packet. If an attack sends a packet, they would not get any response.

@ DROP

O REJECT

Q5.5
1 Point

This jump target responds with an ICMP Destination Unreachable back to the
source. This indicates that a server exists, which is beneficial for troubleshooting
and for attackers.

O DROP
@ REJECT

Q6 Task B (not in SEED Lab PDF)
5 Points

iptables Logging

Note: this exercise is performed on the Guest VM (the first VM that you log into,
not the docker containers. Your prompt should say seed@[hostname] . Also, there are
other rules here, ignore them, or if they get messed up, restart the VM to restore
the rules.

Sometimes you need to log certain packets. Using the jump target LOG (-jL0OG).
Write a rule to log all outgoing icmp packets sent to 8.8.8.8 with the message
"ICMP to Google!" (using --log-prefix)

1. Enable logging by adding the line kern.warn /var/log/firewall.log to the file /etc/rsyslog.conf (be
sure to use sudo)

2. Restart rsyslog: sudo service rsyslog restart

3. Create traffic to be logged (using an iptables rule with -jLOG)

4. The log is saved to /var/log/firewall.log

Submit a screenshot with the following (full VM with date and time):
1. Your iptables -L-v with the LOG rule
2. Your ping from the terminal
3. Log file showing the pings (you can use something such as
tail -n 10 /var/log/firewall.log)

v Task B.png < Download

Activities (-] Terminal ~ May3 200117 e

Chain OUTPUT (policy ACCEPT © packets, O bytes)
pkts bytes target prot opt in out source destination

<] 0 LOG icmp -- any any anywhere dns.google icmp echo-re
quest LOG level warning prefix "ICMP to Google!"

[85/83/24] seed@V
PING 8.8.8.8 (8.
64 bytes from
64 bytes from
64 bytes from
64 bytes from
64 bytes from
64 bytes from
64 bytes from
64 bytes from
64

:~% ping 8.8.8.8

8.8) 56(84) bytes of data.

: icmp seg=1 ttl=115 time=29.1
icmp seg=2 ttl=115 time=22.1
icmp seq=3 ttl=115 time=24.0
icmp seq=4 ttl=115 time=40.2
icmp seq=5 ttl=115 time=39.9
icmp seg=6 ttl=115 time=39.4
icmp seqg=7 ttl=115 time=52.8
icmp segq=8 ttl=115 time=21.4
icmp seq=9 ttl=115 time=56.0

g = €

O 0O @O@mOmoMom®OonE

CO 00 0O 00 0 00 00 0 0 @
CO 00 0O 00 0 0 00 0 @ @

8.
8.
8.
8.
8.
8.
8.
8.
8.

[05/63/24]seed@VM:~/.../Labsetup$ tail -n 10 /var/log/firewall.log
May 3 20:18:29 WM kernel: [3412.749299] ICMP to Google!IN= OUT=enpBs3 SRC=10.8.2. .8.8. T0S=0x66
(=0x00 TTL=64 ID=62726 DF PROTO=ICMP TYPE=8 CODE=6 ID=1 SEQ=4
20:10:30 WM kernel: [3413.751489] ICMP to Google!IN= OUT=enpBs3 SRC=10.6.2. .8.8. T0S=0x66
TTL=64 ID=62917 DF PROTO=ICMP TYPE=8 CODE=8 ID=1 SEQ=5
20:10:31 VM kernel: [3414.753064] ICMP to Google!IN= OUT=enpBs3 SRC=10.6.2. .8.8. T0S=0x66
(=0x00 TTL=64 ID=62983 DF PROTO=ICMP TYPE=8 CODE=8 ID=1 SEQ=6
May 3 20:18:32 WM kernel: [3415.757578] ICMP to Google!IN= OUT=enpBs3 SRC=10.8.2. .8.8. T0S=0x66
(=0x00 TTL=64 ID=63683 DF PROTO=ICMP TYPE=8 CODE=8 ID=1 SEQ=7
20:10:33 WM kernel: [3416.759629] ICMP to Google!IN= OUT=enpBs3 SRC=10.6.2. .8.8. T0S=0x66
TTL=64 ID=63323 DF PROTO=ICMP TYPE=8 CODE=8 ID=1 SEQ=8
20:10:34 WM kernel: [3417.762819] ICMP to Google!IN= OUT=enpBs3 SRC=10.8.2. .8.8. T0S=0x06
(=0x00 TTL=64 ID=63523 DF PROTO=ICMP TYPE=8 CODE=6 ID=1 SEQ=9
May 3 20:18:35 WM kernel: [3418.763864] ICMP to Google!IN= OUT=enpBs3 SRC=10.8.2. .8.8. T0S=0x06
(=6x08 TTL=64 ID=63716 DF PROTO=ICMP TYPE=8 CODE=8 ID=1 SEQ=16
May 3 20:18:36 WM kernel: [3419.766176] ICMP to Google!IN= OUT=enpBs3 SRC=10.8.2. .8.8. T05=0x06

When done, remove the rule (-D), or just restart the entire VM.

Q7 Task C (not in the SEED Lab PDF)
20 Points

Flush all your rules (iptables -F), and write the following rules only on the Router.

10.9.0.0/24 10.9.0.11

Router

” Attacker

10.9.0.1

192.168.60.11
192.168.60.0/24

2 8 &

192.168.60.5 192.168.60.6 192.168.60.7

All traffic should be DROP'ed except for the following rules:

1. Any outgoing traffic from the 192.168.60.0/24 network to the 10.9.0.0/24 network

is allowed. That is, the connection must be initiated from the 192.168.60.0/24
network (and not the other way around).

2. Any host can ping the router (10.9.0.11 or 192.168.60.11)

3. Host 10.9.0.5 is allowed to telnet to 192.168.60.5

All rules must be stateful

Your complete iptable rules. Please write the rules in the same order given
above (1,2, then 3). Hint: do not forget the default policy.

iptables -A FORWARD -m conntrack --ctstate ESTABLISHED,RELATED -j ACCEPT

1. iptables -A FORWARD -i eth1 -0 ethO -d 10.9.0.0/24 -s 192.168.60.0/24 -m
conntrack --ctstate NEW -j ACCEPT

2. iptables -A INPUT -p icmp --icmp-type echo-request -m conntrack --ctstate
NEW,ESTABLISHED -j ACCEPT

iptables -A OUTPUT -p icmp --icmp-type echo-reply -m conntrack --ctstate
ESTABLISHED,RELATED -j ACCEPT

3. iptables -A FORWARD -p tcp -i ethO -0 eth1 -s 10.9.0.5 -d 192.168.60.5 --dport
23 --syn -m conntrack --ctstate NEW -j ACCEPT

iptables -P FORWARD DROP
iptables -P OUTPUT DROP
iptables -P INPUT DROP

Take a screenshot of iptables -L-v. Ensure your screenshot is of the entire VM.

v Task C.png < Download

Activities () Terminal ~ May4 13:13 e
seed@VM: ~/.../Labsetup

hostA-10.9.0.5
host2-192.168.60.6
547ae6becaad host3-192.168.60.7
bfea51fb96a8 seed-router
2c5d5fccbcdc host1-192.168.60.5
[05/04/24]seed@VM:~/.../Labsetup$ docksh bf
root@fea51fb96a8:/# iptables -L -v
Chain INPUT (policy DROP © packets, © bytes)
pkts bytes target prot opt in out source destination

5 420 ACCEPT icmp -- any any anywhere anywhere
icmp echo-request ctstate NEW,ESTABLISHED

Chain FORWARD (policy DROP 4 packets, 254 bytes)
pkts bytes target prot opt in out source destination

8 448 ACCEPT all -- any any anywhere anywhere
ctstate RELATED,ESTABLISHED
0] © ACCEPT all -- ethl ethe 192.168.60.0/24 10.9.0.0/24
ctstate NEW
1 60 ACCEPT tcp -- etheo ethl 10.9.0.5 192.168.60.
5 tcp dpt:telnet flags:FIN,SYN,RST,ACK/SYN ctstate NEW

Chain OUTPUT (policy DROP © packets, © bytes)
pkts bytes target prot opt in out source destination

5 420 ACCEPT icmp -- any any anywhere anywhere
icmp echo-reply ctstate RELATED,ESTABLISHED
root@bfeas51fbo6as: /# [j

Q8 Early/Date Submission Bonus
0 Points

Bonus points for early or late submission will be added here. You may submit up to
five days early for an extra 5% bonus points added to the grade of this assignment,
or up to 4% deducted for late submission.

Submissions more than 4 days late are not accepted without an approved reason.

